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Abstract

This study introduces Neurowarn BCI, a smart wheelchair
system designed to assist individuals with mobility impairments
by utilizing EEG-Insight to interpret brainwave signals for
controlling the wheelchair’s movement and direction.
Additionally, a Recurrent Neural Network (RNN) machine learning
model is integrated to predict the wheelchair’s path,
specifically in Forward, Neutral, and Backward directions. The
model demonstrated an average accuracy of 95%, ensuring reliable
performance. The system's effectiveness was evaluated based on
ISO 9241-11 usability standards, where the results indicated
that it successfully meets user needs, particularly in terms of
ease of use, efficiency, and overall satisfaction. These aspects
were rated as "Very Good", confirming the system’s high
usability. The Neurowarn BCI represents a significant
advancement in the biomedical field, offering a promising
solution to enhance mobility and independence for individuals

with paralysis.
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CHAPTER 1 INTRODUCTION TO THE STUDY

Background of the Study and Conceptual Framework

Background of the Study and Conceptual Framework

As of the 2013, US Paralysis Prevalence & Health
Disparities Survey, nearly 5.4 million individuals endure
paralysis, often stemming from stroke or spinal cord injuries
[1]. Quadriplegia (also known as tetraplegia) occurs in
approximately 60% of traumatic spinal cord injury cases,
rendering all four limbs and the trunk paralyzed [2]. Given
the absence of a cure for complete paralysis, various
alternative treatments exist, ranging from physical and

occupational therapy to mobility aids.

A mobility aid that has gained considerable academic
interest is employing an EEG (electroencephalogram) device to
control a smart wheelchair [3]. A smart wheelchair is a
powered wheelchair that has been modified by adding necessary
sensors and instruments that can read, collect, and send
information that can be used to modify the status of the
wheelchair, as well as interact with the environment or the

user [4].
L
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By employing an EEG device to control a smart wheelchair,
users can engage with their surroundings without relying
entirely on assistance from others [5]. One study has reported
a 70% success rate, thus proving the feasibility of the
approach [6]. However, safety remains a primary concern,
particularly in accurately detecting cerebral signals and the

establishment of secure navigation protocols within unfamiliar

surroundings [7-8].

Building upon the promising potential of Brain-Computer
Interfaces (BCIs) for movement control in individuals with
paralysis, researchers are actively exploring methods to
analyze the dynamic nature of brainwave signals [9]. Recurrent
neural networks (RNNs) offer a promising approach for handling
this task due to its ability to capture the sequential
dependencies present within these signals. Unlike traditional
models, RNNs possess internal loops that enable them to
consider not only the current information but also the context
provided by past inputs. This unique characteristic allows
them to effectively model the complex patterns of brain
activity, making them well-suited for analyzing ongoing brain

signals in real-time [10].
L |
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This study aims to integrate Recurrent Neural Networks

(RNN) into current Brain-Computer Interface (BCI) control

frameworks to anticipate user intention. The objective 1is to
create a warning mechanism based on predictions made by the
model and sensor data retrieved from a custom-built smart
wheelchair. This warning mechanism can detect unseen obstacles
and consequently prevent collisions,

thereby enhancing the

safety of BCI-controlled wheelchairs.

Input Process Output Evaluation
gg:i?sAggévé§¥; Create prediction A potential E;éii??cii;?ll’

stream from the
EEG device.

Head Motion/Tilt:
Head movements are
detected using
motion sensor from
Emotiv’s EEG
device.

Obstacle detection
data:

Obstacles are
detected using
distance sensors.

»

on user’'s next
intention based on
EEG datastream.

Actively compare
prediction with
sensor data to

detect possible

hazard.

»

collision warning.

»

precision, F1
score, loss, and
confusion matrix.

Figure 1.

Conceptual Framework
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Objectives of the Study

This research generally aims to enhance the safety of BCI
(Brain-Components Interface) system-controlled smart

wheelchairs.

Specifically, this study is expected to:

1. design a smart wheelchair that utilizes Emotiv’s
Mental Command Suite for wheelchair motor controls and
Light Detection and Ranging (LiDAR) sensors for obstacle
avoidance.

2. utilize Recurrent Neural Network - Long Short-Term
Memory (RNN-LSTM) to predict the user's intended
direction while avoiding obstacles.

3. develop a user interface that will send visual and
auditory prompts to the user if an obstacle is detected
in the predicted intended direction.

4. evaluate the performance of the algorithm using
recall, specificity, precision, F1 score, loss, and

confusion matrix.
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5. assess the usability of the warning system through
user testing, following the human-system interaction

principles outlined in ISO 9241-11.

Significance of the Study

The results of this study will be useful to the

following:

Tetraplegic Patients. The findings of this study could
directly contribute to the advancement of EEG-controlled smart
wheelchairs thus enhancing the mobility and quality of life of

Tetraplegic Patients.

Doctors and Therapists. This research could provide them
with insights into the treatment of tetraplegic patients. By
understanding how Recurrent Neural Network can better analyze
brainwave signals for wheelchair control, neurologists can
potentially tailor EEG-based therapies for improved patient

outcomes.

Researchers. This study could contribute to the
advancement of Brain-Computer Interface (BCI) technology. The

implementation of RNNs in predicting brainwave patterns is not

L -
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limited to wheelchair control. Researchers could leverage the

findings of this study to develop more effective and efficient

BCI implementations.

Engineers. This study could provide valuable insights
into the practical application of Brain-Computer Interface
(BCI) technology. Engineers could utilize the findings to
enhance the design and development of responsive, real-time
systems that rely on brainwave data, including those requiring
better and faster obstacle detection for safer and more

efficient navigation.

Developers. This study could serve as a valuable
reference for developers, offering approaches they can
leverage to build more intelligent, real-time applications
that respond to neural input. The implementation strategies
are not limited to wheelchair control. They can be extended to
software for accessibility, gaming, health monitoring, and

other interactive BCI-driven platforms
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Delimitation of the Study

This study focused on the application of Recurrent Neural
Networks (RNN) with Long Short-Term Memory (LSTM) units to
predict user-intended directions in a Brain-Computer Interface
(BCI) controlled smart wheelchair. The system utilized
Emotiv's Mental Command Suite to interpret the user's mental
commands to control the smart wheelchair. However, this study
did not investigate or elaborate on the underlying mechanisms
and algorithms of the Emotiv framework itself. This research
was constrained to utilizing the pre-existing capabilities of
the Emotiv system without modifying or enhancing its
functionalities. Additionally, the system developed within
this study was designed to operate effectively only if the two
specific mental commands (push, and pull) have been trained
and recognized by the Emotiv Mental Command Suite. These two
commands are important parameters that were used by the RNN-
LSTM model. Any exploration beyond these two commands is

outside the scope of this research.

Moreover, the study included the modification of an

existing electric wheelchair, transforming it into a smart

L -
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wheelchair equipped with LIDAR sensors, and ultrasonic for

obstacle detection and an Arduino for the control. The
modifications to the wheelchair was strictly based on the
system requirements, which include controlling the wheelchair
using the Mental Command Suite and incorporating an obstacle
detection system. No additional modifications or enhancements
to the wheelchair were undertaken beyond these specified
requirements. The primary goal was to develop a comprehensive
warning system that synergizes the RNN-LSTM based prediction
of the user's next intended direction with the data obtained
from the LIDAR sensors. This warning system was expected to
improve the safety and reliability of the smart wheelchair,
offering a practical solution for users who rely on BCI for
mobility. However, the study did not extend to the development
of new hardware or the exploration of alternative sensor

technologies beyond what was specified.
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Definition of Terms

For better understanding, the following terms were

defined conceptually and operationally:

Arduino Mega 2560: A microcontroller board with many I/0 pins,
suitable for projects needing numerous inputs and outputs,
such as robotics. It is versatile and widely used in the maker

and electronics communities. [39]

In this study, this refers to the software application
designed to analyze the EEG data in real-time and generate
warnings to the user about potential hazards or critical

situations based on the anticipated control commands.

BCI (Brain-Computer Interface): BCI enables direct brain-to-

device communication, allowing control and interaction based

on brain signals. This technology holds promise for enhancing
communication and mobility for individuals with

disabilities. [40]
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In this study, this refers to the system that translates brain

signals from the EEG into control commands for the wheelchair

and potentially generates warnings through the NeuroWarn BCI.

Electroencephalography (EEG): EEG records brain electrical
activity. This is used in neuroscience and clinical settings
for diagnosing disorders and studying brain function. It is
non-invasive and provides real-time insights into brain

activity.[41]

In this study, this refers to the measurement of brain
electrical activity used to control the wheelchair and

potentially trigger warnings from the NeuroWarn BCI system.

Emotiv Mental Command Suite: A brain-computer interface
framework developed by the company Emotiv can classify user

intention through training.[42]

In this study, this refers to the control framework that was

utilized to control a wheelchair.
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LSTM (Long Short-Term Memory): LSTM is an advanced RNN
designed to preserve information over long sequences, ideal
for tasks with long-term dependencies like natural language

processing. It is particularly effective in capturing context

and relationships in sequential data. [43]

In this study, this refers to a specific type of RNN (Long
Short-Term Memory) chosen for its ability to learn complex
patterns in the EEG data and anticipate the user's intended

control commands for the wheelchair.

NeuroWarn BCI: The expected warning system application to be
developed in this study. NeuroWarn BCI serves as the

communication interface between the system and the user.

In this study, it refers to the software application designed
to analyze the EEG data in real-time and generate warnings to
the user about potential hazards or critical situations based

on the anticipated control commands.

Quadriplegia (Tetraplegia): A paralysis that affects all four

limbs and the trunk, often due to cervical spinal cord injury.

L -
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It can result in significant physical challenges and require

assistive mobility devices. [44]

In this study, this refers to the medical condition of the

target users who were piloting the EEG-controlled wheelchair.

RNN (Recurrent Neural Network): RNN is a neural network type
that retains information through cycles, often used in
sequence modeling tasks like time series prediction. It is

effective for capturing patterns in sequential data.[45]

In this study, this refers to the type of artificial neural
network used to analyze the EEG data and anticipate potential

control commands from the user.

Time-of-Flight (ToF) sensors: these are used for a range of
applications, including robot navigation, vehicle monitoring,
people counting, and object detection. ToF distance sensors
use the time that it takes for photons to travel between two

points to calculate the distance between the points.[50]

In this study, this refers to the sensors used for real-time

detection of obstacles and measurement of distances in the

L -
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wheelchair's environment. These sensors were integrated with

the EEG-based control system to enhance safety by providing

the wheelchair with information about its surroundings.
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CHAPTER 2 REVIEW OF RELATED STUDIES

Review of Existing and Related Studies

Current Systems

The typical human brain contains approximately 86 billion
neurons [15], and the communication among these neurons is the
fundamental activity of the brain. These neurons are excitable
cells that possess inherent electrical properties, and their
activity generates both magnetic and electrical fields. These
fields can then be detected and recorded through the use of

specialized recording electrodes [16].

Motor control enables the stabilization and movement of
the body and its extensions in a deliberate manner.
Researchers in this field primarily investigate actions such
as walking, reaching, facial expressions, speech, typing, and
writing [62]. Studies suggest that motor commands for limb
movements derive from a limited set of fundamental motor
patterns, known as muscle synergies. These synergies activate
groups of muscles simultaneously, helping to manage the body's

many movement possibilities more efficiently [63].
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Two promising approaches for restoring movement in
individuals with permanent paralysis are neural stem cell
therapy and motor neuroprosthetics. Neural stem cell therapy
aims to repair damaged neural pathways, while motor
neuroprosthetics allow patients with intact cognitive function
to control external devices using their thoughts or "motor
intentions," bypassing the damaged pathways. Motor
neuroprosthetics function by detecting electrical activity in
the brain associated with movement intention and converting
these neural signals into commands for external devices. In
simple terms, a brain-computer interface (BCI) acts as a
substitute for nerves and muscles, using neural signals along
with specialized hardware and software to generate movement

[64].

Electroencephalography (EEG) is a tool that records the
electrical signals produced by the brain, allowing healthcare
professionals and researchers to study and understand how the
brain operates and the neural processes underlying various
cognitive functions [17]. Electrodes detect the micro-Volt-
sized signals that result outside the head due to the

synchronized neuronal action within the brain. Present

L -
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monitoring methods typically fall into two categories:

inpatient, which occurs within a tertiary care facility and
involves time-locked video monitoring with the patient usually
confined to a bed due to wires connecting electrodes and
recording equipment; or ambulatory, where the recording device
is portable, allowing the subject to carry on with their
regular daily activities [18]. Unlike other electrical
recording devices that require inserting electrodes into the
brain hence calling for surgery, EEG electrodes are simply
attached to the scalp therefore it is considered a non-

invasive procedure [17].

Common application areas are sleep studies, epilepsy,
brain-computer interface, and augmented cognition. Sleep
disorders impact over 70 million individuals in the United
States. The typical diagnostic approach involves
polysomnography (PSG), which simultaneously monitors various
bodily functions such as brain activity (via
electroencephalography or EEG), heart rate (via
electrocardiography or ECG), and respiratory function during
sleep. However, the requirements for wearable EEG devices used

in sleep studies differ somewhat from those employed in

L -
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epilepsy studies [18]. Epileptic seizures are characterized by

a burst of electrical activity usually originating from a
particular area within the brain [17], and as of 2024,
approximately 50 million people worldwide have it—making it
one of the most common neurological diseases globally [19]. By
monitoring EEG signals, healthcare professionals can determine
whether an epileptic seizure is taking place, and if so,
identify its type [17]. Brain-computer interface (BCI), on the
other hand, is a new technology with multidisciplinary
connections including materials, neuroscience, signal
processing, and so on [20]. Traditionally, brain-computer
interface (BCI) technology utilizing electroencephalography
(EEG) has been employed to assist individuals with severe
motor impairments, enabling them to communicate and control
devices through their brain signals. However, recent
advancements have expanded the applications of BCI beyond this
realm. Emerging trends indicate that BCI can now be utilized
in various domains such as entertainment, industrial settings,
and even language and clinical research that investigate EEG

patterns in individuals with aphasia. [16,20,21,22].
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Multichannel EEG is generally used in brain-computer
interfaces (BCIs), whereby performing EEG channel selection
improves BCI performance by removing irrelevant or noisy
channels, and enhances user convenience from the use of lesser
channels [21]. The main purpose of applying channel selection
is to reduce computational complexity while analyzing EEG
signals, improve classification accuracy by reducing over-
fitting, and decrease setup time. Baig and Aslam assert that
channel selection algorithms enable comparable classification
performance while utilizing fewer EEG channels. In certain
instances, channel selection can even boost system performance
by eliminating noisy channels that may adversely impact the
analysis. Their study demonstrates that, in most cases, a
reduced set of 10 to 30 channels can achieve the same level of
performance as utilizing the full channel array [23]. In a
study about real-time control of unmanned aerial vehicles
(UAVs) that used non-invasive BCI headsets from Emotiv, called
EPOC+ (l4-channel) and INSIGHT (5-channel), the EPOC+ had
98.8% in overall classification accuracy while 84.5% for the
5-channel. However, one of the main difficulties in monitoring
electroencephalography (EEG) data is identifying and removing

unwanted signals or artifacts. These artifacts can originate

L -
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from factors related to the subject being monitored, such as

body movements, sweating, electrical activity from the heart
(ECG), and eye movements. Additionally, technical artifacts
can arise from external sources like electrical interference
at 50/60 Hz frequencies and issues with the monitoring
equipment itself. Addressing these various types of artifacts

requires different approaches and techniques [24].

A separate study explored the use of a single-channel
electroencephalography (EEG) device, the NeuroSky MindWave
Mobile-2 headset, in conjunction with an Arduino Uno
microcontroller for wheelchair control. The system was
designed to enable maneuvering in various directions such as
start, turn left, turn right, and stop. The researchers
employed recurrent neural networks trained on non-sequential
data for this purpose. However, instead of utilizing a full-
sized wheelchair, the study was conducted using a miniature
wheelchair model. The authors acknowledged that the use of
only a single EEG channel resulted in reduced accuracy
compared to systems with more channels [28]. Others have
developed and implemented a platform that enables control of a

wheelchair system through a brain-computer interface (BCI) and

L -
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automated navigation within indoor environments. The

experimental results demonstrated that the user could

successfully stop the wheelchair at high success rates across

two experiments (Experiment A = 94.7% success rate, Experiment
B = 92% success rate) [29]. Another study that used Emotiv

INSIGHT and Arduino for BCI-controlled Smart Wheelchair
successfully maneuvered ‘forward’, ‘backward’, ‘left’, and
‘right’ using the commands from the integrated BCI unit with a
negligible time of 2s delay. Performing simultaneous changes
in direction from opposing directions will cause a slightly
larger delay of 5s [30]. Moreover, the Emotiv Mental Command
Suite offers a user profile feature that allows individuals to
personalize their experience with EEG technology. By creating
a user profile, individuals can tailor the settings of the EEG
device to their specific needs and preferences, enhancing the
overall effectiveness and comfort of the system.[41] This
feature is particularly beneficial in applications such as
brain-computer interfaces (BCIs), where individualized
settings can improve the accuracy and efficiency of brain

signal interpretation.
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The use of electroencephalography (EEG) has created new

opportunities not only for technological innovation but also
for helping people who thought they could no longer regain
mobility. In a relevant existing system that used artificial
intelligence (AI) algorithms, specifically recurrent neural
networks (RNNs), helped the researchers choose the most
suitable algorithm for their study. Although the system was
tested on a small-scale wheelchair model, it used RNNs trained
on non-sequential EEG data. This provided useful information
on how well the algorithm could read brain signals for real-
time movement control. While the system's accuracy was lower
due to using only one EEG channel, the study still showed that
simple and affordable EEG-based brain-computer interface (BCI)

systems could support mobility.
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Related Systems or Solutions

Conventionally, the most widely employed methods for
reducing noise in signals are wavelet transform (WT)
denoising, independent component analysis (ICA) denoising, and
empirical mode decomposition (EMD) denoising [25]. However,
among these techniques, the wavelet transform (WT) has emerged
as the most prevalent and effective approach for removing
noise from non-stationary signals, such as those obtained from
electroencephalography (EEG) and electrocardiography (ECG)
recordings [26]. In 2020, a study about EEG signal-driven
brain-computer interface for disabled wheelchair users even
used a combined wavelet transformation and recurrent neural
networks (RNN) approach, where the wavelet transform extracted
time-frequency features and the RNN classified four drone
movement directions and focus/non-focus status, achieving

79.6% accuracy [35].

While the number of EEG channels impacts accuracy,
training is also crucial for enhancing the performance and
precision of mental commands used to control systems like
wheelchairs. Proper training can help improve accuracy even

when using a limited number of channels [30]. While there may
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be some concerns surrounding the emerging trend of smart

wheelchairs, the integration of algorithms can provide
assistance and contribute to safe navigation for these systems
[27]. For instance, a research study introduces a long short-
term memory deep learning (LSTM) network to recognize emotions
using EEG signals [31]. The brainwaves from a user of a BCI-
controlled smart wheelchair are susceptible to emotions which
may lead to the malfunctioning of the device since the EEG
will be suffering from too much noise [24], however with the
help of the integration of LSTM into the system, the
classification of four negative class of emotions using genres
sadness, disgust, angry, and surprise along with the
classification of three basic class of emotions i.e.,
positive, negative, and neutral, brainwave noise may be
reduced [31]; hence improves safety navigation other than

purely depending on obstacles as risk factors [27].

RNN, one of the promising deep learning (DL) models, can
predict future information based on past and present data.
However, in the RNN structure, it is difficult to learn stored
data for a long time because of the gradient vanishing issue

or gradient exploding issue. A model that fundamentally solved
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this problem of RNN is LSTM [33], making it one of the most
advanced networks to process temporal sequences [34]. Another

paper employed deep learning models, specifically long short-
term memory (LSTM) and gated recurrent neural networks (GRNN),
for the task of classifying motor imagery from
electroencephalography (MI-EEG) data. As mentioned earlier,
the LSTM architecture was designed to mitigate the vanishing
gradient problem, while GRNN allowed each recurrent unit to
adaptively capture dependencies across different time scales.
The experimental results demonstrated that GRNN and LSTM
achieved higher classification accuracies compared to existing
approaches [32]. Furthermore, in another separate study, LSTM
was implemented for a brain-computer interface (BCI)
controlled smart wheelchair using simple eye open/close
commands. This approach achieved higher accuracy ranging from
77.61% to 92.14% compared to traditional classifiers (59.71%),
with an optimal time window of around 7 seconds for user
tasks. Real-world testing revealed a trade-off between
accuracy and response time was necessary to ensure reliable
detection [36]. These findings suggest that such recurrent

neural network (RNN) models can be beneficial for further
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research and applications involving the processing of MI-EEG

signals [32].

As for object detection, Papageorgiou and T. Poggio
present a powerful system for detecting objects like faces,
people, and cars in still images. It uses a technique called
Haar wavelets combined with a machine learning algorithm
called support vector machines. This allows very accurate
detection with very few false positives. For face detection,
it achieves 90% accuracy with only 1 false positive per
100,000 images processed. For people detection, it gets 90%
with 1 false per 10,000 images. This is the first people
detector that is purely based on pattern recognition without
using motion tracking or assumptions about the scene. However,
the study finds detecting cars more challenging due to
viewpoint variations, so the researchers utilized a component-
based approach—identifying parts like headlights and wheels,

which turned out to be better [40].

Robots can be useful in dangerous situations where it's
not safe for humans [49]. A three-wheeled autonomous
navigational robot with efficient modular architecture by

Balasubramanian, et. al. has the key capabilities of obstacle
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detection, pattern recognition, and obstacle avoidance. The

robot can successfully identify and selectively pick up balls
of a particular color while ignoring other objects. The design
utilizes a single-board computer as the central controller,
communicating with ultrasonic sensors, motors, and multiple
microcontrollers to control motion; a Java program running on
the onboard computer that communicates with the master
microcontroller through RS232; a modified H-bridge circuit
that efficiently drives the DC motors of the base unit; and
Hough transform algorithm for object detection that executes
in real-time Java in just 1 second compared to 4 minutes in
Matlab. The modular architecture also allows easily adding
various modules to enhance functionality [47]. Although robots
generally use various sensors to detect obstacles and
determine their own position, conventional sensors have
limitations in range, resolution, and complexity. So
Hutabarat, et. al. developed an autonomous mobile robot that
uses a LiDAR (Light Detection and Ranging) sensor to avoid
obstacles. It moves according to the Braitenberg vehicle
strategy. A single Raspberry Pi 3 computer board runs the
sensor data collection and control algorithm. Experiments

showed that LiDAR can consistently measure distances, without
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being affected by an object's color or ambient light levels.

The mobile robot could avoid different-sized colored objects.
However, it could not detect and avoid transparent objects.
Overall, this autonomous robot can navigate safely inside a

room, avoiding walls and obstacles [49].

Sakic, et. Al also proposed a solution for determining
the distance to obstacles by combining data from a camera and
a LIDAR sensor. The algorithm uses the camera images for
object detection and the LIDAR's point cloud data to calculate
the position of detected objects. Based on the position of the
nearest object in front, the motion planning module can
control the vehicle's movement. During wvalidation, this
approach showed good results in accurately estimating obstacle
distances while meeting real-time processing requirements.
However, the current implementation has some limitations. It
only considers the area directly in front of the wvehicle
rather than the true trajectory. It is also necessary to add
time synchronization between data obtained from different
sensors so the algorithm will be able to process samples from

different sensors—which originate from the synchronized time



West Visayas State University
COLLEGE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY
La Paz, lloilo City, Philippines

28

r |
moment with a certain threshold. Crucially, if the camera

fails to detect an object, the LIDAR data is also ignored[48].

Distance measurement sensors based on the Time of Flight
(ToF) principle have been increasingly adopted lately due to
their cost-effectiveness and precision. These sensors are
likely to play a crucial role in obstacle detection systems
going forward [50]. Garcia, et. al. showcased the reliability
and effectiveness of ToF technology in diverse environments,
demonstrating its potential to enhance safety and efficiency
in obstacle detection applications by designing and rigorously
evaluating a robust object detection system that integrated
ToF sensors. The study used 150 images to obtain 660 samples,
with 210 samples containing a curb and 450 without a curb.
Various window sizes, feature vectors, filters, classifiers,
and amplitude and depth images from the camera were tested to
find the best performance using the leave-one-out cross-
validation method. The KNN classifier performed best, with
98.333% accuracy and an AUC ROC of 0.9987. This result used a
20x40 pixel window size, median filtering to reduce noise, and
HOG features extracted from the amplitude and distance window

with a 4x4 cell size, resulting in a 2592-value feature
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vector. A method was developed to measure the distance between

the vehicle and the curb. When tested on 30 new images not
used for training, the classifier correctly classified 24
images but made errors on 6 images, achieving 80% performance
[51]. Another research study employed an innovative 3D range
camera for obstacle detection and segmentation algorithms to
be used in Automated Guided Vehicles (AGVs). This 3D range
camera operates on the Time-of-Flight (ToF) principle,
enabling it to simultaneously capture intensity images and
range data of targets in indoor environments. The range camera
is particularly attractive for obstacle detection in
industrial applications due to its relatively low cost
compared to similar sensors. Additionally, it can deliver
range and intensity images at a rate of 30 frames per second,
with an active range of 7.5 meters, and it has no moving
parts, unlike many off-the-shelf laser sensors that
incorporate spinning mirrors. However, after the
implementation, researchers analyzed some outdoor data, and
the preliminary results show good promise in using this sensor
for outdoor forest environments, in other areas that are
shaded, and in night conditions—indicating that it's not

limited to indoor settings anymore [52]. The development of
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ToF sensors has also been driven by advancements in machine

learning and computer vision technologies. Modern ToF sensors
are increasingly used in computer vision systems, including
augmented reality and 3D object reconstruction. These
advancements enable ToF sensors to provide real-time
information about objects in space, making them wvaluable
components in obstacle detection systems for applications such
as car parking assistance, mobile robotics, and workplace

safety enhancement [50].

It just goes to show that this study on developing a
mind-controlled wheelchair using electroencephalography (EEG)
and recurrent neural networks (RNNs) is supported by previous
research that addresses two key challenges: reducing noise in
EEG signals and improving navigation safety. EEG signals are
often affected by noise, especially from the emotional state
of the user, which can lower the accuracy of brain-computer
interface (BCI) systems. Earlier studies have shown that
traditional methods like wavelet transform (WT) are effective
in filtering out noise from non-stationary signals such as
EEG. In addition, using long short-term memory (LSTM)

networks—a type of RNN—helps the system recognize and manage
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emotional patterns, which reduces brainwave noise and improves

the clarity of the signals. This supports more accurate and
stable control of the wheelchair. For navigation, systems that
use object detection techniques like Haar wavelets with
support vector machines (SVMs), along with sensor fusion from
cameras and LIDAR, have been shown to improve safety. These
technologies allow the wheelchair to detect nearby obstacles
and take appropriate action, even if the brain signal is
delayed or unclear. These findings support our study by
showing how signal processing, and smart navigation systems
can work together to build a safer and more reliable mind-

controlled wheelchair.
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Related Studies

Relevant research was conducted on using the 5-channel
Emotiv INSIGHT electroencephalography (EEG) headset to control
a wheelchair intended for elderly individuals and those with
motor impairments. Despite the limited number of EEG channels,
the study determined that accurate wheelchair control was
highly feasible with this system. The wheelchair incorporated
a drive motor to enable safe navigation. It integrated a
10.525 GHz Doppler radar detector (40 mA) and a microwave
sensor (HB100) to detect obstacles in the surrounding
environment. These sensors, coupled with a custom algorithm
developed by the researchers, issued collision warnings to the

user, thereby assisting in obstacle avoidance [27].

Path planning involves charting the trajectory to reach a
target location from the wheelchair's current position while
accounting for potential obstacles. Ferracuti et al. [37],
employed the Dynamic Window Approach (DWA) navigation
algorithm for indoor obstacle avoidance in their study.
However, their smart wheelchair was limited to indoor
environments. During indoor navigation toward a desired

destination, obstacles along the planned path can elicit

L -



West Visayas State University
COLLEGE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY
La Paz, lloilo City, Philippines

33

r L
electroencephalography (EEG) potentials when detected by the

user. These potentials could serve as supplementary inputs to
the navigation algorithm, facilitating trajectory modification
to uphold safety. Their research demonstrated the feasibility
of real-time feedback between the smart wheelchair and the
brain-computer interface (BCI) acquisition system, enabling
users to actively contribute to trajectory control by
circumventing environmental factors that may compromise their

security [37].

Contrary to the previously mentioned studies that used
RNN, Kocejko et. al. utilized convolutional neural network
(CNN) models for signal classification acquired from sixteen
EEG channels for the implementation of an obstacle detection
system and its integration with a brain-machine interface with
movement activity commands ‘LEFT’, ‘RIGHT’, ‘RELAX’, and
‘BREAK’ . The system employed the on-board camera to capture
RGB images, which were transmitted to a server for inverse
depth estimation using the Pytorch MiDaS v3.1
dpt beit large 512 model. The model provided relative depth
information from the input images. The inverse depth outputs

were segmented into left, right, and center sections, with the
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bottom portions cropped to minimize floor misidentification as

obstacles. The mean depth of each section was computed and
compared against a predefined threshold tailored to detect
large obstacles like walls or trash cans. For smaller obstacle
detection, each section underwent grid subdivision, with the
mean value of each grid cell calculated and tallied if
exceeding a specified threshold. The integration of a
collision detection system employing movement imagery and a
l6-channel electroencephalogram (EEG) proved beneficial in
augmenting conventional robot control. A subject-dependent
approach yielded significantly higher accuracy, as a brain-
computer interface's (BCI) effectiveness hinges on individual
factors such as cognitive capabilities, attention span, and
the ability to volitionally modulate brain activity. Notably,
users require extensive training to attain proficiency in
controlling a BCI system via neural signals. The achieved 83%
accuracy 1s comparable to state-of-the-art solutions, albeit
with a limited participant group and some unintended vehicle
movements. Nonetheless, the results underscore the real-world
applicability of the proposed solution while emphasizing the

need for continued refinement and comprehensive investigations
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to facilitate seamless integration into larger-scale

applications [38].

The study proposes an autonomous system that integrates
an electroencephalogram (EEG) interface to capture the user's
desired movement direction while incorporating robust object
detection and avoidance capabilities. A key innovation lies in
the integration of an informative warning system that provides
visual feedback to the user, transparently communicating
reasons for stopping or confirming safe conditions for
intended turns rather than abruptly halting upon encountering
an obstacle. This transparent communication enhances the user
experience and situational awareness. By coordinating cutting-
edge assistive technologies like EEG control with advanced
environmental mapping and obstacle avoidance algorithms, the
research undertakes the development of an autonomous system
that can effectively navigate environments while prioritizing

user agency and safety throughout the process.

These studies support the development of a mind-
controlled wheelchair by demonstrating the feasibility of
using EEG data, whether from low or high-channel systems, for

reliable movement control and obstacle avoidance. They show
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that EEG signals can provide both directional commands and

responsive feedback to enhance navigation safety. The
integration of neural networks, such as RNNs and CNNs,
improves signal classification and decision-making accuracy.
Additionally, combining EEG with real-time environmental
sensing, like object detection, contributes to safer mobility
solutions. These findings validate the potential of RNNs with
EEG for creating an efficient and user-responsive wheelchair

system.
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CHAPTER 3 RESEARCH DESIGN AND METHODOLOGY

Description of the Proposed Study

This study investigates the integration of real-time
movement prediction and obstacle detection to develop a
warning system for Brain-Computer Interface (BCI) controlled
smart wheelchairs. It employed Emotiv Insight, a 5-channel
electroencephalogram (EEG) headset that was used to capture
continuous time series electroencephalographic data from the
user. The same EEG headset was also used to control a
customized smart wheelchair using Emotiv’s existing control

framework called Mental Command Suite.

The main objective is to predict the user's intended
direction using Recurrent Neural Networks (RNNs) with Long
Short-Term Memory (LSTM) units. The researchers, therefore,
trained the model using brainwave data collected from the five
channels of the EEG device that was accessed through Node-RED.
The model worked alongside the Emotiv Mental Command Suit. The
Emotiv Mental Command Suite was responsible for the wheelchair

control while the RNN-LSTM model analyzed the extracted
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features and predicted the user's intended movement (forward,

backward, right, left).

To demonstrate the performance of the developed warning
system, researchers modified an electric wheelchair,
transforming it into a smart wheelchair. The said wheelchair
was equipped with a microcontroller, motor drivers for
control, and Light Detection and Ranging (LiDAR) and
ultrasonic sensor for obstacle detection. The system utilized
both predictions from the developed RNN model and obstacle
detection sensors to create a simple logic. If the predicted
movement direction matches with an obstacle, the wheelchair
receives a "stop" command and sends a warning prompt to the
user. However, if the path is clear, the predicted command is
executed. Furthermore, a control laptop was attached to the
wheelchair which acted as both the main processing unit and

the user interface for the warning system.
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Methods and Proposed Enhancements

Target

The study was conducted to investigate the integration of
real-time prediction using RNN-LSTM and an obstacle detection
system to create a warning system for EEG-controlled smart
wheelchairs. Ten participants, six male and four female, aged
between 18 and 25 years old, were involved in the training,
testing, and validation of the developed system. The
researchers conducted this study within a controlled

environment in their private homes.

Data Gathering Instrument
This study utilized the following instruments to gather

data:

1. Emotiv Insight - 5-Channel Wireless EEG Headset

This study used the Emotiv Insight, a 5 Channel
Wireless EEG Headset. It is a non-invasive brain-computer
interface (BCI) headset. The device measured electrical

activity within the brain and converted it to
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electroencephalography (EEG) data. It then sent this data

to a control laptop for classification and training.

. Control Laptop

A control laptop was attached to the custom-built
smart wheelchair. The device received and processed data
from the EEG Headset. The laptop served as both the

processing component and user interface of the system.

. Node—-RED

The researchers extracted brainwave data from the
EEG device using Node-RED. Node-RED utilized Emotiv’s
Cortex API to extract data from the EEG device. It

provided a user-friendly interface ideal for this study.

. Obstacle detection sensors (LiDAR and Ultrasonic Sensor)

The study incorporated a LiDAR (Light Detection and
Ranging) sensor equipped with Time of Flight (ToF)
technology and ultrasonic sensor for obstacle detection.
The LiDAR emitted laser pulses and measured the time it
took for these pulses to bounce back from objects in the

wheelchair's surroundings. Meanwhile, the ultrasonic
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sensor used the same technique but with sound. This
allowed these sensors to detect obstacles in the

surrounding environment.

Procedure

The researchers mainly utilized Python for the main
program. A local web application run on Javascript was used

for the user interface. The following steps were:

a. Emotiv Mental Command Suit Training

Before extracting the continuous EEG data for RNN
training, participants must first train the existing
control system provided by Emotiv called Mental Command
Suite. In this process, the participants trained the
Mental Command Suite framework to classify push, and
pull. The Mental Command Suit Framework was responsible

for the movement controls of the smart wheelchair.

b. Data Collection
After training Emotiv’s Mental Command Suite, the
researchers collected a time-series EEG data using

Node-RED. The participants recorded a time series of data
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using the three commands of the mental command suite
(push, pull, neutral) for a specific timeframe. Node-RED
automatically wrote the comma-separated values (CSV) file
used to train the neural network model. This approach
enabled researchers to streamline the data collection,
ensuring that the model receives suitable data for its

purpose.

. Data preprocessing

The collected time series data were then split into
a training and testing set. Seventy percent of the data
collected were used for training the RNN-LSTM model. The
remaining thirty percent were used to test the

algorithmic performance of the neural network model.

. Model Training

This study utilized the RNN-LSTM neural network model.
Long Short-Term Memory (LSTM) networks, which are a form
of Recurrent Neural Network (RNN), excel at predicting
sequential input such as movement intentions. LSTMs
solved the vanishing gradient problem in RNNs by making
use of memory cells that can learn long-term

dependencies. These cells regulated the flow of
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information through gates, allowing the network to store

important past information for future predictions.

The following were the components of a Long Short-Term

Memory (LSTM) network:

1. Activation Function
A softmax function is a good choice for the
output layer as it maps internal activations to
probabilities between 0 and 1, ideal for predicting
the four-movement categories (Left, Right, Forward,
and Backward) .

eti
\) (xi) — Zn e
i=1

Figure 2. Softmax Activation Function Formula [53]

Figure 2 illustrates the formula of a softmax
activation function. It takes a vector of real
numbers as input and converts them into a
probability distribution of K possible outcomes,

where K 1s the number of classes. In the RNN-LSTM
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model, K would represent four possible movements:
forward, backward, left, and right. The function
takes a vector of activation values (x 1) from the
neural network's final layer, representing each
movement class (forward, backward, left, right). It

exponentiates each value (e being the base of the
natural logarithm), then divides them all by the sum
of those exponentials. This transforms the
activations into a probability distribution (s(x 1))
where the output for each class signifies the
likelihood of that class being the correct
prediction. This normalization step guarantees that
the output values sum to 1, which is a crucial

property of a probability distribution.
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. Loss Function
Categorical cross-entropy is a common loss
function for multi-class classification problems. It
measures the difference between the predicted
probability distribution and the actual distribution

of the movement class.

C
CE = — E tilog(f(s)i)
1
Figure 3. Cross Entropy Function Formula [54]

Figure 3 illustrates the cross entropy function
formula. It measures the difference between the
model's predicted probability distribution (f(s))
for movement categories (forward, backward, left,
right) and the actual intended movement (t) in a
given sequence. The lower the CE, the better the
model's predictions align with reality. f(s)
represents the probability scores assigned by the
model to each movement category. The formula
(log(f(s))) calculates a penalty for assigning a low

-
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probability to the correct movement across multiple

training examples. By minimizing this penalty, the
LSTM model learns to adjust its internal parameters

and improve its predictions for intended movements.

3. Optimizer
Adam (Adaptive Moment Estimation) is a popular
optimizer due to its efficiency in handling sparse
and noisy data, potentially encountered with

movements.

Unlike regular RNNs, LSTMs can learn long-term
dependencies within the data due to their internal gating
mechanism. The following are the gating mechanism and

their description:

1. Forget Gate
Decides what information from the previous cell

state (memory) to discard.

2. Input Gate
Selects what new information from the current input

to store in the cell state.
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3. Output Gate
Determines what information from the current cell
state to output.

Forget Gate

. 40

— x

ft [y
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Figure 4. LSTM Model [55]

These gates allow LSTMs to learn complex temporal

patterns in movement thought data.

The time window defines the amount of historical
movement through the data that the LSTM considers for
prediction. The researchers experimented with different

values (e.g., 0.5 seconds, 1 second) to find the optimal
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window that captures relevant patterns without

introducing unnecessary noise.

The window size is the number of data points within
the time window. It should be large enough to capture the
relevant movement thought sequence but not excessively
long to avoid computational inefficiency. The researchers
also experimented with the wvalues to find the optimal
value for the accuracy of the model with a reasonable

size and adjust this based on the data characteristics.

. Smart Wheelchair Modification

To showcase the system's functionality, researchers
modified a smart electric wheelchair with the essential
control components and sensors needed for the warning
system. The following figure illustrates the blueprint

for the smart wheelchair and its components;
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Figure 5. Wheelchair Blueprint

Electric wheelchair

An electric wheelchair featuring a 24-volt
250-watt Brushless DC Motor, an onboard motor
driver, and a 12-volt battery with a 20-kilometer
range, served as the foundational platform for the
smart wheelchair. The researchers replaced the
control system and integrated the essential sensors

needed for the warning system.
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BTS7960 Motor Driver

The BTS7960 Motor Driver allowed the
researchers to control the existing onboard motor
driver in the electric wheelchair through an Arduino

microcontroller.

. Arduino Mega

This microcontroller served as the
communication interface between the warning and
control system in the laptop computer and the

components and sensors within the wheelchair.

Obstacle Detection Sensors

This study employed 2 kinds of

obstacle-detecting sensors

a. LIDAR - Time-of-Flight (ToF) sensors - this
sensor was used to detect obstacles in front of
the wheelchair due to its long range.

b. Ultrasonic Sensor - this sensor was used to

detect obstacles behind the wheelchair.
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5. Control Laptop

This laptop functioned as both the processing
unit for the entire system and the interface
facilitating interaction between the user, the
system, and the smart wheelchair. It controls the
movement of the wheelchair, processes sensor data,
runs the developed RNN model, and displays the

output of the warning system.

6. Laptop Mount

This was used to mount the control laptop into

the wheelchair.

f. Software Development

The study developed a simple local web application
to act as the wvisual interface for the warning system.
This program collected data from the wheelchair sensors
and predictions from the RNN model. The program displayed
the location of the obstacle using the wheelchair sensors
and issued a warning—it halts the wheelchair if the

predicted direction of its movement coincides with the
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1
location of the obstacle, otherwise, it will continue to

move 1in the user’s desired direction.

. System testing

The researchers ensured that the system demonstrated
the capacity to predict EEG brain wave data accurately
and efficiently by testing and evaluating the necessary
components in the system. The algorithm was tested using
recall, specificity, precision, Fl1 score, loss, and
confusion matrix. The usability was then accessed using

the ISO 9241:11 usability standards.
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Proposed Enhancement
The advantages of the proposed warning systems are the

following:

a. Reduced Cognitive Load

Automating obstacle detection and issuing warnings
reduces the cognitive load for users. This allows them to
focus on controlling the wheelchair and navigating their

surroundings.

b. Enhanced Safety

The system significantly reduces the risk of
collisions and accidents by providing timely warnings
about potential obstacles. This approach provides a

greater sense of security for the users.

Improvements in EEG-controlled wheelchair technology make
it more dependable, helping users trust that it would work
well and minimize risks. As these advancements develop
further, users can feel more confident in relying on these

systems to operate smoothly and safely.
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Components and Design

System Architecture
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<
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Figure 6. System Architecture

As depicted in Figure 6, the proposed system employs a
multi-layered architecture to safeguard against wheelchair
collisions. A portable EEG headset (1) acts as the initial
point of contact, capturing the user's brain activity. This
data i1s then wirelessly transmitted via Bluetooth to the
EmotivPro application (2). Here, the system leverages Emotiv's
Mental Command Suite Control Framework (3) to establish

communication with the Arduino Mega (4) and transmit control

L -
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commands for maneuvering the wheelchair. Concurrently, the

EmotivPro application transmits data to a specifically
developed RNN-LSTM model (b) for analysis. This model
generates predictions that are passed to the warning system
(c) . The warning system functions by continuously monitoring
these predictions alongside sensor data received from the
wheelchair (a). If a sensor detects an impending obstacle that
aligns with the model's prediction of a potential collision,
the system springs into action. A warning prompt (d) is
activated to alert the user, while a stop command is
simultaneously transmitted to the Arduino Mega (4). This
immediate halt ensures the safety of the user by preventing

the wheelchair from colliding with the obstacle.
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Software Architecture
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Figure 7. Software Architecture

Figure 7 illustrates the software architecture of the
warning system. The first stream of data comes from the
EmotivPro application. It sends that data to the developed RNN
model through the Node-RED. The prediction of the model is
then sent to the developed warning system. Simultaneously, the
Pyfirmata application continuously sends sensor data into the
warning system. The warning system then compares these sensor
data with the model prediction. If the predicted direction

coincides with an obstacle, the warning sends a command back
L -
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to the Pyfirmata application to stop, and send a warning

message through its user interface. If not, the command will

execute.

Procedural Design

Does user
predicted
direction has

Does an
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an obstacle
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exist?

No
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Stop wheelchair and
send warning prompt

Create user
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mental commands

No
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Proceed with the
wheelchair command

press
exit?

Figure 8. Procedural Design

Figure 8 illustrates the procedures of the proposed
system. Upon launching the application, it first checks if the
user has an Emotiv Account. If the user has no account, it
will require the user to create one. If the user has an
account, it will proceed to the home screen. From there, the
system will check if the user has a user profile. If the

system doesn’t find a user profile, it will require the user
L -
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to create one and briefly train the mental commands. If the

system finds a user profile, it will begin creating
predictions and compare them to obstacle sensor data. Once the
predicted direction and an obstacle match, the system will
send a prompt and stop the wheelchair. However, if the
predicted direction is clear of obstacles, the desired command
will be executed. This comparison will actively continue until

the user decides to exit.

Object-Oriented Design

NeuroWarn ECI

Create training
profile for BCI
Commands

Contrel a
wheelchair using

the BCI commands

Figure 9. Object-Oriented Design
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Figure 9 shows the use case diagram of the system. The
user primarily used the system to control the smart
wheelchair. However, the user must first create a user profile

in the EmotivPro application for training.

Process Design (DFD)

user

| t

Raw EEG signals System Status/
Warning

! |

EEG controlled smart
wheelchair system

1

Distance and

Movements . .
Orientation

| I

environment

Figure 10. Data Flow Diagram Level O

Figure 10 offers a high-level view of this EEG-controlled
smart wheelchair system. It uses a square to represent the

User, who provides raw EEG signals. Another square depicts the

L -
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Environment, in which sensor data is derived. The core of the

system is represented by a rounded rectangle, encompassing all

internal processes.
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signals into movements within the surrounding environment.

Also, with the integration of sensors to monitor the terrain,
the system can match the intent of the user and the actual
terrain to decide if proceeding with the action would be safe.
Then if the system considers the proceeding action to be
dangerous, 1t sends a warning to the user prompting it to

stop.
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Methodology

System Development Life Cycle

Requirements Gathering _l

Analysis —1

Design _l

Implementation _l

Testing —1

Deployment

Figure 12. System Development Life Cycle

The researchers utilized the Waterfall System Development
Life Cycle to identify the project goals. The following are

the phases in the Waterfall development method:

a. Requirements Gathering
In this phase, the researchers looked into the
existing landscape of BCI-Controlled Smart Wheelchairs.
This is done by exploring various academic papers that
discuss the concept and implementation of BCI-Controlled
Wheelchairs. The researchers explored algorithms,
methodologies, research gaps, and any possible system

limitations.
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b. Analysis

The researchers then analyzed the collected
requirements. In the case of this study, it was
identified that current BCI-Controlled Smart Wheelchairs
lack safety protocols. Hence it was decided that the
research group would develop a warning system to enhance

safety.

. Design

The researchers planned out the architecture of the
warning system. This integrated an RNN-LSTM architecture
into the existing BCI control framework and created a
prediction. The prediction was then integrated with
obstacle-detecting sensors to develop a warning system. A
local computer application was then developed for the

implementation of the warning system.

. Implementation

The researchers started the development of the
warning system based on the identified design and
specifications. The warning system was implemented in the

developed BCI-controlled wheelchair.
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A random sampling technique was implemented to

select test cases for the
system's performance. The
user experience were then

standards outlined in ISO

f. Deployment

evaluation of the warning
system's overall usability and
assessed in accordance with the

9241-11.

Following the development phase, the researchers

deployed the warning system onto the BCI-controlled

wheelchair. This process involved integrating the

developed system into the wheelchair's existing

infrastructure.
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CHAPTER 4 RESULTS AND DISCUSSION

Implementation

Development Tools

The development of the NeuroWarn BCI system focused on
three main components: the BCI wheelchair control system, the
warning system interface, and the RNN-based prediction model.
FEach component worked together to create a cohesive system
aimed at enhancing mobility and safety for wheelchair users

through advanced control and situational awareness.

The BCI wheelchair control system was designed to enable
wheelchair movement through mental commands processed by
EmotivBCI. EmotivBCI software provided the necessary framework
to train and interpret these mental commands, which the user
could then use to control the wheelchair’s movement. A Python
program acted as the intermediary between EmotivBCI and the
wheelchair’s hardware, retrieving mental command data from
EmotivBCI and transmitting it to the Arduino hardware via
serial communication. This communication ensured that each

mental command was promptly translated into motor responses.
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To manage the hardware control, the Arduino IDE and
Arduino language (C++) were employed. The C++ code on the
Arduino interpreted the movement data received from the Python
program and directly controlled the wheelchair motors,
resulting in a responsive and smooth movement that aligned

with the user’s mental input.

The second component, the warning system interface, was
developed as a local web application to provide real-time
safety alerts based on data from sensors and the RNN
prediction model. The interface was built using HTML, CSS, and
JavaScript, with JavaScript leveraging WebSockets for
real-time data transmission. This application continuously
received input from a time-of-flight sensor programmed through
Arduino, which monitored the wheelchair’s surroundings to
detect potential obstacles. In addition, the web application
used WebSockets to gather input from the EEG device and the
BCI control system, ensuring it remained synchronized with the

user’s mental commands.

A NodeJS runtime environment powered the local server,
managing WebSocket connections to integrate data from the

neural network model. This model predicted the wheelchair’s
L -
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potential path based on the user’s commands and environmental
input. The combined data from the BCI system, sensor feedback,
and predictive model allowed the web application to deliver
timely alerts, enhancing the user’s awareness of surrounding

hazards and supporting safer navigation.

For the third component, the RNN-based prediction model,
Node-RED was used to collect and process data from the user’s
interactions and surroundings. The RNN model was coded and
trained in Python, using this data to predict the user’s
likely path based on the current environment and mental
commands. This predictive capability improved the system’s
ability to anticipate and mitigate potential obstacles,
reinforcing safety measures through proactive navigation

assistance.

Together, these three components form an integrated

system called NeurowarnBCI.
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Hardware Requirements

The Neurowarn BCI system requires four hardware
components. The primary component is the EEG headset. The
headset reads the user's electrical brainwave data and
transmits it to the NeuroWarn BCI system for interpretation.
The system is only compatible with Emotiv EEG headsets because
the system relies on Emotiv’s mental command framework. In
this study, the Emotiv Insight, a five-channel EEG headset,
was used. However, any headset in the Emotiv product line was

expected to be compatible with the system.

Figure 13. Emotiv Insight
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The second hardware component is a smart wheelchair or a
BCI-controlled wheelchair. In this study, an electric
wheelchair was modified into a smart wheelchair. The motor
driver of the electric wheelchair was replaced with a BTS7960
motor driver. This approach enables the control of the
wheelchair motors via an Arduino. The Arduino was then
connected to a control laptop which allows the NeuroWarn

system to control the movement of the wheelchair.

Figure 14. Smart Wheelchair
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To enable the NeuroWarn BCI to detect obstacles, the
modified wheelchair was equipped with obstacle-detecting
sensors. Specifically, a total of four sensors were installed
with two facing forward and two facing backward. The
front-facing sensor utilized in the modified wheelchair was a
time-of-flight sensor. It was capable of detecting obstacles,
for this use case the researcher utilized a range of 1,500
millimeters in a 20-27-degree field of view. These sensors
were positioned at the front corner of the wheelchair at an
angle of 13.5 degrees facing up and 5 degrees on the side to
cover the center. The rear-facing sensor was an ultrasonic
sensor with a utilized detection range of 1 meter in a
15-degree field of view. These sensors were positioned in the
rear corners of the wheelchair at an angle that covers a range
approximately the same size as the width of the wheelchair.
This configuration enabled the wheelchair to detect obstacles
in its path both ahead and behind as illustrated in the

following figure.
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Figure 15. Top View of the Detection Zones of the Obstacle

Detecting Sensors

Figure 16. Side View of the detection Zones of the Obstacle

Detecting Sensors

Figures 15 and 16 illustrate the coverage and range of
the obstacle-detecting sensors. The area colored red is the
coverage of the LiDAR sensor while the area in gray is the

coverage of the ultrasonic sensor.
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The modified electric wheelchair was converted into a
smart wheelchair using two Arduino circuits. One controlled
the wheelchair's motor, while the other collected sensor data.

The following was the circuit diagram for the Arduino

circuits.

24V BATTERY + _]

3
|
>
>
a
c
5
o

Figure 17. Arduino Circuit Diagram for the Electric Motor

Driver Control

Figure 17 shows the Arduino circuit diagram for the
electric motor driver control. To transform the standard
electric wheelchair into a smart wheelchair, the existing
motor driver was replaced with a BTS7960 electric motor

driver. This motor driver was selected for its capability to
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handle high-amperage motors. Two BTS7960 drivers were used,

one for each motor.

The first BTS7960 driver was connected to the Arduino,
with pin 7 linked to the driver's RPWM pin and pin 8 connected
to the LPWM pin. These pins controlled the motor's rotation
direction. To regulate motor speed, pin 3 of the Arduino was
connected to the driver's L EN and R EN pins. For power, the
Arduino's 5V pin was connected to the driver's VCC pin, and
GND was linked to the ground. The driver was then connected to

Motor One and its 24V battery.

For the second BTS7960 driver, pin 9 of the Arduino was
connected to the driver's RPWM pin, and pin 10 was connected
to the LPWM pin to control the motor's direction. Pin 11 was
linked to the L EN and R EN pins for speed control. The driver
was powered by connecting it to the Arduino's 5V and GND pins.
It was then connected to the second motor of the wheelchair

and the motor battery for power.

This circuit enabled the control laptop to manage the
wheelchair's motor movement, allowing the NeuroWarn system to
control the wheelchair's physical motion.

L -
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Figure 18. Arduino Circuit Diagram for the Obstacle Sensors

Figure 18 illustrates an Arduino microcontroller
connected to 2 ultrasonic sensors (HC-SR04) and 2
time-of-flight sensors (VL53L1X) for distance measurement. The
HC-SR04 sensors are powered by the Arduino's 5V and GND pins,
with their trigger and echo pins connected to separate digital
pins for measuring distance using ultrasonic waves. Meanwhile,
the VL53L1X sensors are interfaced via the I2C bus, with their
SDA and SCL lines connected to the Arduino’s SCL and SDA pins,
respectively, while the XSHUT pins are assigned to different
digital pins to manage individual sensor addresses. These
sensors receive power from the 5V pins of the Arduino. This

setup satisfies the distance sensing requirement, utilizing

L -
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VL53L1x attached on the front ensures real-time sensing

capability.

76
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Software Requirements
The following are the software requirements to run
NeurowarnBCI:
1. EmotivBCI - is an application developed by Emotiv for

their EEG headset. This is where users can train
Mental Command. Mental Commands are used in this study
as the input control for wheelchair movement and a

target variable for the RNN prediction.

. Node-RED - is an open-source flow-based programming

tool that allows users to connect devices, APIs, and
services through a visual interface. In this study,
Node-RED was used as the tool to collect EEG data.
This data is used to train the prediction of the RNN

Model.

. Neurowarn BCI - is the software developed in this

study. It integrates both the control system for the
BCI-controlled wheelchair, and RNN-based warnings for

obstacle avoidance and safety.
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Input and Outputs of the Study

The study receives input from the user through an EEG
headset, which reads the user's brainwave activity and
transmits the data to the system for interpretation. The
system has two outputs: wheelchair movement and a warning
system. To achieve this functionality, there are several

interactions between the user and the system.

Emotiv Mental Command Suite Training

The Emotiv Mental Command Suite is a brain-computer
interface framework developed by the company Emotiv that can
classify user intention through training [41]. It was chosen
to be the main framework for this study due to its popularity
and reliability in the BCI research community [56]. The mental
command suite has fifteen commands. However, for this study,
only two out of fifteen commands will be trained and used.
These commands are the push (forward) and pull (backward). The
EmotivBCI application provides an interface for training the

Mental Command Suite.
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Neutral State Training
Before training a command, the mental command suite first
requires the user to train a neutral state. In this state, the
user training the framework must be calm and quiet. This state
serves as the baseline for classifying various kinds of

commands. Figure 19 illustrates the user interface of

EmotivBCI when adding a neutral state.

EMOTIVBCI signezo  (©) omEa

|
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Figure 19: EmotivBCI’s User Interface when adding Neutral
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Push (Forward) Command Training

To train the push command, the user must simply select
the add command and choose push in the EmotivBCI application.

Once the command is added, the user can start training.

EMOTIVBCI ® omn
&

b E !

A = !

010 Add Command

Live training feedback

LIVE MODE

Figure 20. EmotivBCI’s User Interface when adding push

When the user starts training, it should bring the user
to a training interface where the user can start thinking of a
specific thought that he/she wants to associate with the push
command. Associating a facial muscle movement (e.g., smiling,

raising brows, clenching teeth) with training mental commands
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is also possible, as this approach has proven highly effective

in EEG classification [61].

Figure 21. EmotivBCI’s UI during pull training

The user can then continuously add training to the push
command. The more training sessions recorded, the more

accurate the framework can classify the registered command.



West Visayas State University
COLLEGE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY
La Paz, lloilo City, Philippines

82
r A

Pull (Backward) Command Training

Similarly to the push command, to train the pull command, the
user must first add a new command and select pull. The user

can then start training the pull command.
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Figure 22. EmotivBCI’s User Interface when adding pull

During training, the user is be taken to an interface
like the previous command training. However, the user training
the mental commands must think of a thought or facial muscle
movement different from the thought or facial muscle movement
he/she associated with the previous commands. This is to
ensure that brainwave data differ and the MCS framework can

classify it.

L -
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Figure 23. EmotivBCI’s performance visualization

EmotivBCI features a simple visualization of the
framework's performance in classifying commands as shown in
the image above. Each circle represents a distinct mental
command, and the greater the distance between these circles,
the better the performance of the Mental Command framework. To
achieve optimal results, users are encouraged to continually

train their mental commands.

Once the mental command training is complete, the user

can begin operating the BCI wheelchair control system.
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The Neurowarn BCI wheelchair control system

The BCI wheelchair control system has five expected
movements: stop, forward, backward, left, and right. However,
due to the limitations of the five-channel EEG headset [57],
only three movements (stop, forward, and backward) will be
controlled using the mental command framework. For the left
and right movements, the onboard gyroscope in the Emotiv
Insight headset will be utilized as has been implemented in

other BCI-controlled wheelchairs [58].

Additionally, each movement also triggers a response in
Neurowarn’s user interface. A section of Neurowarn’s interface
displays the current state or the direction of the wheelchair

as shown in Figure 21.
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Current Path

Forward

Figure 24. Neurowarn’s UI section that shows the wheelchair

state

The smart wheelchair's user interface (UI) displays both
the current and predicted path, providing a direct visual
representation of the wheelchair's movements. Additionally,
the UI provides an assessment of the safety of these paths by
utilizing the Obstacle Detection feature, located on the left
side of the interface. If either the predicted or current path
is deemed unsafe, the text indicator updates from "Safe" to
"Not Safe." Furthermore, the interface also displays the

status of the EEG battery and signal quality.



West Visayas State University
COLLEGE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY
La Paz, lloilo City, Philippines

86
r A

Moving Forward

To activate the forward output, the user must think of
the trigger thought they practiced during the push training.

This is expected to make the wheelchair move forward.

% ;5.

Figure 25. Before and after forward command

Figure 25 shows the output of the forward command. The
image on the left is the position of the wheelchair before the
forward command while the image on the right is after the
forward command. Observe how the wheelchair moves forward

after the forward command.
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Figure 26. Neurowarn BCI’s interface when moving forward

Additionally, when the forward command is triggered, a
section of the warning system's user interface displays the

message “Forward,” as shown in Figure 26.
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Moving Backward

To activate the backward output, the user must think of
the trigger thought they practiced during the pull training.

This is expected to result in the wheelchair moving backward.

Figure 27. Before and after backward command

Figure 27 shows the output of the backward command. The
image on the left is the position of the wheelchair before the
backward command while the image on the right is after the

backward command. Observe how the wheelchair moves backward

after the backward command.
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Figure 28. Neurowarn BCI’s interface when moving backward

Similarly with move forward, when the backward command is
triggered, a section of the warning system's user interface

displays the message “Backward” as shown in Figure 28.
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Turning Left
To activate the left output, the user must simply tilt
their head to the left. This is expected to result in the

wheelchair turning left.

Figure 29. Before and after left command

Figure 29 shows the output of the left command. The image
on the left is the position of the wheelchair before the left
command while the image on the right is after the left
command. Observe how the wheelchair turns left after the left

command.
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Figure 30. Neurowarn BCI’s interface when turning left

A UI response is also triggered when turning left.
Neurowarn BCI’s interface displays the text “Turning Left” as

seen in Figure 30.
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Turning Right

To activate the right output, the user must simply tilt
their head to the right. This is expected to result in the

wheelchair turning right.

Figure 31. Before and after the right command

The images above show the output of the right command.
The image on the left is the position of the wheelchair before
the right command while the image on the right is after the
right command. Observe how the wheelchair turns right after

the right command.
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Turning Right

Safe

No obstacles detected while Turning Right.

’ 7 s You may proceed right.

& A

Predicted
Obstacle Path
[

Su”

Figure 32. Neurowarn BCI’s interface when turning right

When the right command is triggered, a section of the warning

system's user interface displays the message “turning right”

as shown in Figure 32.
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Obstacle Detection output
The input from the obstacle detection sensors generates a
corresponding output in the NeuroWarn user interface. A simple

obstacle map within the UI displays the detected obstacle in a

way that is easy for the user to understand.

Current Path

Forward
Safe

No obstacles detected ahead.
You may proceed forward

Figure 33. Neurowarn BCI’s obstacle detector section

The obstacle map has an image of a wheelchair positioned
in the center, with three bars displayed in front and three
bars at the back as seen in the screenshot above. The bars

appear green when no obstacles are detected, and they turn red
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when an obstacle is detected in that area as seen in the

following examples.

95
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Figure 34. The image shows a box positioned in front of

the wheelchair to simulate an obstacle.

Current Path

Forward

&

Obstacle
Detector

S

Figure 35. User interface when an obstacle is detected in

front
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In Figure 34, an obstacle is visible in front of the
wheelchair. The wheelchair’s front LiDAR sensor detects this
obstacle and displays it on the user interface, as shown in
Figure 35.
-
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Figure 36. The image shows a box positioned behind the

wheelchair to simulate an obstacle.

Current Path

Forward
Safe

Mo obstacles detected ahead.
You may proceed forward.

Figure 37. Neurowarn’s UI interface when back obstacles are

detected
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In Figure 36, an obstacle is visible at the back of the
wheelchair. The wheelchair’s back LiDAR sensor detects this
obstacle and displays it on the user interface, as shown in
Figure 37.
-
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Warning Outputs

Warning prompts accompanied by a warning sound are
triggered when the predicted direction aligns with an
obstacle. Additionally, the system also stops the motors to
prevent a collision. Once the path is clear of obstacles, the
warning prompt disappears, and the wheelchair motor is

reactivated allowing the user to resume movement.

Figure 38. The image shows an obstacle in the path of the

predicted direction
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Current Path

Forward

AN

Predicted
Path

Figure 39. Warning prompt of forward

Figure 38 shows an instance where a participant triggered
a warning. An obstacle was detected in front of the wheelchair
while it was expected to move forward. Figure 39 displays the
warning prompt generated by the user interface in response to

the potential collision.
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Results Interpretation and Analysis

The results and analysis focused on the performance of
the LSTM neural network trained on EEG frequency band data to
classify three commands: Neutral, Forward, and Backward. The
model performance was evaluated using multiple metrics,
including precision, sensitivity (recall), specificity,
Fl-score, and a confusion matrix. These metrics were derived
from predictions on the test set, which was separate from the
training set to ensure an unbiased evaluation of model

performance.

Dataset

The dataset was composed of 25 features, which are the 5
frequency bands of each of the 5 probes of the EEG headset.
The target variable would be one of three commands: neutral,
forward, or backward. The data collection process used
Node-RED to record the frequency band activities from the EEG
headset and directly outputs them as a CSV file ready to be

preprocessed and used for training in our LSTM Model.
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Precision

The precision of the positive predictions is a measure of
their accuracy. A 94.16% accuracy in this instance indicated
that 94.16% of the samples that were predicted to be positive
were, in fact, true positives. Given its high accuracy rate,
the model appeared to be reasonably adept at preventing false
positives. When false positives must be reduced, like in
obstacle avoidance decision-making situations, high accuracy

is essential.

Sensitivity/Recall

Sensitivity, or recall, measures the proportion of true
positives correctly identified out of the total actual
positives. A sensitivity of 93.95% meant that the model
successfully identified 93.95% of all actual instances of each
command. This high recall showed that the model was adept at
capturing actual instances of commands, reducing the chance of
missed detections (false negatives). This performance level is
advantageous for applications in obstacle avoidance where it
is important to identify as many true positives as possible,

ensuring responsiveness to each command.
L -
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Specificity

Specificity measures the model's ability to correctly
identify negative cases. A specificity of 96.70% implied that
the model performs very well at avoiding false positives. High
specificity further reinforces the model's reliability by
ensuring that instances were not incorrectly classified as
commands. This was critical for minimizing false alarms and
ensuring that only genuine commands were acted upon, improving

overall model robustness.

Fl-Score

The Fl-score provides a balanced view of the model's
precision and recall by calculating their harmonic mean. With
an Fl-score of 94.05%, the model demonstrated strong overall
accuracy 1in correctly identifying commands while balancing
false positives and false negatives. The high Fl-score
indicated that the model was well-suited for applications
where a balance between precision and recall is essential,
making it effective in scenarios requiring both accurate

command detection and minimal false classifications.
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Overall Accuracy
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Figure 40. Model Accuracy

With an overall accuracy of 93.87%, a majority of the
test set's samples were correctly predicted to be either
Neutral, Forward, or Backward by the model. With a high degree
of accuracy, this result shows that the model can consistently
categorize EEG-based orders, indicating its overall efficacy
in command identification. An accuracy of more than 93.87%
indicates that the model has picked up on pertinent patterns
in the data, but it could still be improved to pick up on more

subtleties that might help lower mistakes even further.
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Confusion Matrix
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Figure 41. Confusion Matrix

The confusion matrix is a visualization tool used to
evaluate the performance of your image classification model.
It allows you to compare the actual target values (True Label)
with the predicted values (Predicted Label) from your machine
learning model. In this case, the target categories are

‘Neutral’, ‘Forward’, and ‘Backward’.

a) Neutral: The model correctly classified 353 out of 375
neutral samples (94.1% accuracy). There were 22 false
negatives (classified as Forward) and 10 false negatives

(classified as Backward).



West Visayas State University
COLLEGE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY
La Paz, lloilo City, Philippines

107
1

b) Forward: The model correctly classified 297 out of 310
forward samples (95.81% accuracy). There were 17 false
negatives (classified as Neutral) and 17 false positives

(classified as Backward).

c) Backward: The model correctly classified 189 out of
195 backward samples (96.92% accuracy). There were 6
false negatives (classified as Neutral) and 50 false

positives (classified as Forward).

Overall, the model performed well in classifying all

three classes with high accuracy (>94%). The lowest accuracy

was observed for the Neutral class (94.1%) but all the

accuracies were well above the chance level.

Here are some additional metrics to consider:

Metric Percentage

Precision 94%

Recall (Sensitivity) 93%

Fl-Score 94%

Specificity 96%

Table 1. Metrics
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These metrics further confirm that the model is

performing well on this classification task.

We can also see the loss and accuracy curves plotted over
the epochs. The training accuracy increases steadily, and the
validation accuracy follows a similar trend. This suggests
that the model is learning well and generalizes well to unseen
data. The loss curves show a similar trend where the training
loss decreases and the validation loss follows a similar
pattern. This again suggests that the model is learning well

and not overfitting to the training data.

Effects of Methods and Enhancements

a) L2 Regqularization: This regularization method reduces
overfitting by penalizing large weights, helping the
model generalize better to unseen data. This likely
contributed to the high specificity and precision scores,

which show the model’s effectiveness on the test set.

b) Batch Normalization: Added after each LSTM layer, batch

normalization helps stabilize and accelerate the training
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process, improving model convergence and reducing

overfitting.

c) Dropout and Spatial Dropout: These methods were applied
to prevent over-reliance on specific neurons by randomly
disabling them during training. The dropout layers likely
contributed to reducing overfitting, as suggested by the

high scores on the test set.

d) Checkpoint and Early Stopping: These callbacks preserved
the best-performing model and prevented further training
when validation loss plateaued. This approach likely
prevented overfitting, ensuring a model with strong

generalization capabilities.

Observations and Significant Variables

1. Effect of Sequence Length (Window Size): The model's
capacity to accurately capture temporal patterns may have been
impacted by the window size of 5 used to create EEG sequences.
Testing different sequence lengths turns up patterns that
enhance Fl-score and memory.

2. Hyperparameter Selections: The dropout rate and kernel
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regularization parameter were set to certain values, however,
they may still need to be adjusted further to improve the
model's performance. The optimal value found to maximize the

accuracy of the model was a dropout rate of 0.3.

3. Class Imbalance: If the number of samples for each
instruction is unbalanced, recall or specificity may be
impacted. Balancing the dataset or changing the class weights

during training may further increase the model's sensitivity.
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System Evaluation Results

A total of ten participants were invited to evaluate the
Neurowarn system. These were individuals aged 18-25 who were
willing to spend time to train and test the Neurowarn system.
Each test session lasted three hours per participant.
Participants were first asked to train the mental commands
which took 1.5 hours and train the RNN model which took

another hour.

A 6x3 meter area was then converted into an obstacle
course to allow participants to test the wheelchair. A
predetermined path was set within this space, with four
obstacles strategically placed along the path. The obstacle
was a 32 cm x 22 cm x 24 cm box, large enough for the
wheelchair sensor to detect. Figure 42 illustrates the

obstacle course design.
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Obstacle #4

Obstacle #3

Obstacle #2

Obstacle #1

Figure 42. The course design

Participants were then given 15 minutes to complete the
obstacle. They were instructed to simply follow the

predetermined path and avoid the obstacles.

ISO 9241-11

The NeuroWarn BCI was then evaluated using the ISO
9241-11 standards. It was selected for its focus on usability
in Human-Computer Interaction (HCI) systems. This standard was
particularly relevant for assessing safety-critical systems
such as EEG-based wheelchair control where usability is

essential to ensure safe and effective operation [59].

L -
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According to the ISO 9241-11 standards, usability is
defined as the range in which a product can be used by
specific users to achieve certain specified goals with
effectiveness, efficiency, and satisfaction in a specified

context of use [60].

A 30-item questionnaire, comprising 10 gquestions for each
aspect of usability—effectiveness, efficiency, and
satisfaction—was written for the evaluation. These questions
were based on the specific standards outlined in ISO 9241-11
[60]. Participants were asked to rate each gquestion on a
5-point Likert scale, where 1 represents "Strongly Disagree"
and 5 represents "Strongly Agree." The purpose of this
assessment was to gather participants' perspectives on the

overall usability of the NeurowarnBCI system.
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Participant Effectiveness| Efficienc Satisfaction Total
P y Usability
Score
Participant 1 4.1 4.3 4.5 4.3
Participant 2 4.0 4.2 4.3 4.2
Participant 3 4.2 4.4 4.4 4.3
Participant 4 4.3 4.1 4.5 4.3
Participant 5 4.0 4.3 4.4 4.2
Participant 6 4.1 4.2 4.3 4.2
Participant 7 4.2 4.4 4.5 4.4
Participant 8 4.1 4.3 4.3 4.2
Participant 9 4.2 4.3 4.4 4.3
Participant 10 4.1 4.2 4.4 4.2
Overall Average 4.13 4.27 4.40 4.27
Table 2. Results Table
Scales of Mean Description
5 - 4.1 Very Good
4 - 3.1 Good
3 - 2.1 Fair
2 - 1.1 Poor
1 Very Poor
Table 3. Evaluation Legend
Table 2 presents the average Likert scale ratings for
Effectiveness, Efficiency, and Satisfaction across 10
participants, using the evaluation legend from Table 3. It
L -
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also includes the Total Usability Score for each participant.
The highest possible score was 5, and the lowest was 1. The

following is the interpretation of each usability aspect;

Effectiveness

Effectiveness, as defined by ISO 9241-11, refers to the
accuracy and completeness with which users achieve specified
tasks using the system. NeuroWarn received an average
effectiveness score of 4.13, indicating that users generally
perceived the system to accurately interpret and respond to
their commands. Most participants felt that NeuroWarn could
reliably predict intended directions and effectively detect
and avoid obstacles in the environment. This score reflects a
solid performance in interpreting user inputs and providing an
accurate response that aligns with user expectations for a

navigation assistive device.

Efficiency

Efficiency measures the resources expended, such as time
and mental effort, to achieve a goal while using the system.

NeuroWarn achieved an average efficiency score of 4.27,
L -
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reflecting a high level of perceived efficiency. Participants
reported that they could focus more on navigating the course
rather than on managing NeuroWarn’s controls, allowing for
faster and smoother task completion. The system’s
responsiveness and interface clarity contributed to this
high-efficiency rating, enabling users to maintain a steady

pace with minimal interruptions.

Satisfaction

Satisfaction reflects the overall comfort and positive
experience users have with the system. NeuroWarn scored an
impressive 4.40 in satisfaction, the highest average across
the three categories. This high score indicates that users
were generally very pleased with the system's usability,
performance, and intuitive interface. Participants expressed
confidence in using NeuroWarn and appreciated its clear

feedback, smooth interface, and visually appealing design.

Overall Usability Score

The combined average usability score for NeuroWarn was

4.27. This robust rating signifies that NeuroWarn is a
L -
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well-rounded system with strengths across effectiveness,
efficiency, and satisfaction as outlined in the ISO 9241-11
standards [60]. Participants felt that it met their
expectations for performance, ease of use, and navigational

support, with minimal mental effort required to achieve tasks.
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CHAPTER 5 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Summary of the Proposed Study Design and Implementation

A smart wheelchair system was developed that integrates a
5-channel Emotiv Insight EEG headset for brainwave acquisition
and LiDAR sensors for obstacle detection. A Recurrent Neural
Network with Long Short-Term Memory (RNN-LSTM) architecture
was employed to predict the user’s intended direction,
enhancing the system’s autonomous navigation capabilities. To
facilitate user interaction and provide real-time feedback, a
web application was designed to simplify complex system
inputs, such as EEG signals, LiDAR data, and RNN-LSTM
predictions, into intuitive visual prompts. Auditory alerts

were also implemented to provide additional warning signals.
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Summary of Findings

NeuroWarn BCI’s smart wheelchair system demonstrated
effective obstacle detection capabilities, with LiDAR sensors
providing a 1l.5-meter range for front obstacles and l-meter
range for rear obstacles. The system's predictive algorithm,
based on an RNN-LSTM architecture, achieved an accuracy of
86.05% in predicting user intent, as measured by the xtest

dataset.

To assess the system's usability and effectiveness, an
evaluation was conducted using the ISO 9241-11 standard. The
results indicated a high level of user satisfaction and system
performance, with an overall average rating of 4.27 out of 5
across the dimensions of effectiveness, efficiency, and

satisfaction.
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Conclusions

This study successfully developed and evaluated a smart
wheelchair system that leverages advanced technologies to
enhance user autonomy and safety. By integrating a 5-channel
EEG headset, LiDAR sensors, and an RNN-LSTM-based predictive
model, the system accurately interprets user intent and
detects obstacles in real-time. A user-friendly web interface
and auditory alerts further improve usability and

effectiveness.

The system's performance, as evaluated using the ISO
9241-11 standard, demonstrated high user satisfaction and
effectiveness. The results indicate that the system
effectively meets the needs of users, particularly in terms of

ease of use, efficiency, and overall satisfaction.
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Recommendations

To further enhance the accuracy of brainwave data
acquisition, the use of a higher channel EEG system is
recommended. While resource constraints limited the scope of
this study, future research could explore the potential

benefits of such a system.

Additionally, optimizing hyperparameter tuning can
significantly impact the model's performance. Experimenting
with different LSTM layer sizes, dropout rates, and
regularization strengths may improve the balance between
accuracy and recall. Moreover, varying the sequence length can
enhance the model's ability to identify pertinent patterns in

the data, which could increase sensitivity and precision.

Also, in terms of data augmentation, providing the model
with more instances to train from, and supplementing data for
classes with fewer samples may assist increase recall and the
Fl-score. Exploring alternative model architectures like
transformer-based networks or GRUs could also lead to more

effective capture of EEG patterns.
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Future research in BCI should also explore different
testing frameworks for evaluating BCI models. By directly
analyzing raw EEG data to predict usability metrics, such
frameworks can provide more objective and quantitative
assessments, moving beyond traditional subjective

questionnaires.

Finally, to enhance and prove its efficiency, it is
recommended that the system be tested on actual gquadriplegic
patients. If proven effective, its implementation would

represent a significant advancement in the biomedical field.
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	CHAPTER 4 RESULTS AND DISCUSSION 
	Implementation 
	Development Tools 
	 
	Hardware Requirements 
	The second hardware component is a smart wheelchair or a BCI-controlled wheelchair. In this study, an electric wheelchair was modified into a smart wheelchair. The motor driver of the electric wheelchair was replaced with a BTS7960 motor driver. This approach enables the control of the wheelchair motors via an Arduino. The Arduino was then connected to a control laptop which allows the NeuroWarn system to control the movement of the wheelchair. 
	 
	To enable the NeuroWarn BCI to detect obstacles, the modified wheelchair was equipped with obstacle-detecting sensors. Specifically, a total of four sensors were installed with two facing forward and two facing backward. The front-facing sensor utilized in the modified wheelchair was a time-of-flight sensor. It was capable of detecting obstacles, for this use case the researcher utilized a range of 1,500 millimeters in a 20-27-degree field of view. These sensors were positioned at the front corner of the wheelchair at an angle of 13.5 degrees facing up and 5 degrees on the side to cover the center. The rear-facing sensor was an ultrasonic sensor with a utilized detection range of 1 meter in a 15-degree field of view. These sensors were positioned in the rear corners of the wheelchair at an angle that covers a range approximately the same size as the width of the wheelchair. This configuration enabled the wheelchair to detect obstacles in its path both ahead and behind as illustrated in the following figure. 
	 
	 
	Figure 15. Top View of the Detection Zones of the Obstacle Detecting Sensors 
	 
	Figure 16. Side View of the detection Zones of the Obstacle Detecting Sensors 
	Figures 15 and 16 illustrate the coverage and range of the obstacle-detecting sensors. The area colored red is the coverage of the LiDAR sensor while the area in gray is the coverage of the ultrasonic sensor.  
	 
	The modified electric wheelchair was converted into a smart wheelchair using two Arduino circuits. One controlled the wheelchair's motor, while the other collected sensor data. The following was the circuit diagram for the Arduino circuits. 
	Figure 18 illustrates an Arduino microcontroller connected to 2 ultrasonic sensors (HC-SR04) and 2 time-of-flight sensors (VL53L1X) for distance measurement. The HC-SR04 sensors are powered by the Arduino's 5V and GND pins, with their trigger and echo pins connected to separate digital pins for measuring distance using ultrasonic waves. Meanwhile, the VL53L1X sensors are interfaced via the I2C bus, with their SDA and SCL lines connected to the Arduino’s SCL and SDA pins, respectively, while the XSHUT pins are assigned to different digital pins to manage individual sensor addresses. These sensors receive power from the 5V pins of the Arduino. This setup satisfies the distance sensing requirement, utilizing VL53L1x attached on the front ensures real-time sensing capability. 
	Software Requirements 
	 
	Input and Outputs of the Study 

	 
	In Figure 34, an obstacle is visible in front of the wheelchair. The wheelchair’s front LiDAR sensor detects this obstacle and displays it on the user interface, as shown in Figure 35.  
	In Figure 36, an obstacle is visible at the back of the wheelchair. The wheelchair’s back LiDAR sensor detects this obstacle and displays it on the user interface, as shown in Figure 37. 
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