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Abstract 

 

This study introduces Neurowarn BCI, a smart wheelchair 

system designed to assist individuals with mobility impairments 

by utilizing EEG-Insight to interpret brainwave signals for 

controlling the wheelchair’s movement and direction. 

Additionally, a Recurrent Neural Network (RNN) machine learning 

model is integrated to predict the wheelchair’s path, 

specifically in Forward, Neutral, and Backward directions. The 

model demonstrated an average accuracy of 95%, ensuring reliable 

performance. The system's effectiveness was evaluated based on 

ISO 9241-11 usability standards, where the results indicated 

that it successfully meets user needs, particularly in terms of 

ease of use, efficiency, and overall satisfaction. These aspects 

were rated as "Very Good", confirming the system’s high 

usability. The Neurowarn BCI represents a significant 

advancement in the biomedical field, offering a promising 

solution to enhance mobility and independence for individuals 

with paralysis. 
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CHAPTER 1 INTRODUCTION TO THE STUDY 

Background of the Study and Conceptual Framework 

 

Background of the Study and Conceptual Framework 

As of the 2013, US Paralysis Prevalence & Health 

Disparities Survey, nearly 5.4 million individuals endure 

paralysis, often stemming from stroke or spinal cord injuries 

[1]. Quadriplegia (also known as tetraplegia) occurs in 

approximately 60% of traumatic spinal cord injury cases, 

rendering all four limbs and the trunk paralyzed [2]. Given 

the absence of a cure for complete paralysis, various 

alternative treatments exist, ranging from physical and 

occupational therapy to mobility aids.  

A mobility aid that has gained considerable academic 

interest is employing an EEG (electroencephalogram) device to 

control a smart wheelchair [3]. A smart wheelchair is a 

powered wheelchair that has been modified by adding necessary 

sensors and instruments that can read, collect, and send 

information that can be used to modify the status of the 

wheelchair, as well as interact with the environment or the 

user [4].  
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By employing an EEG device to control a smart wheelchair, 

users can engage with their surroundings without relying 

entirely on assistance from others [5]. One study has reported 

a 70% success rate, thus proving the feasibility of the 

approach [6]. However, safety remains a primary concern, 

particularly in accurately detecting cerebral signals and the 

establishment of secure navigation protocols within unfamiliar 

surroundings [7-8]. 

Building upon the promising potential of Brain-Computer 

Interfaces (BCIs) for movement control in individuals with 

paralysis, researchers are actively exploring methods to 

analyze the dynamic nature of brainwave signals [9]. Recurrent 

neural networks (RNNs) offer a promising approach for handling 

this task due to its ability to capture the sequential 

dependencies present within these signals. Unlike traditional 

models, RNNs possess internal loops that enable them to 

consider not only the current information but also the context 

provided by past inputs. This unique characteristic allows 

them to effectively model the complex patterns of brain 

activity, making them well-suited for analyzing ongoing brain 

signals in real-time [10]. 
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This study aims to integrate Recurrent Neural Networks 

(RNN) into current Brain-Computer Interface (BCI) control 

frameworks to anticipate user intention. The objective is to 

create a warning mechanism based on predictions made by the 

model and sensor data retrieved from a custom-built smart 

wheelchair. This warning mechanism can detect unseen obstacles 

and consequently prevent collisions, thereby enhancing the 

safety of BCI-controlled wheelchairs.  

 

Figure 1. Conceptual Framework 
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Obstacle detection 
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detected using 
distance sensors. 



West Visayas State University 
 

La Paz, Iloilo City, Philippines 

 

 

4 

┏              ┓ 

┗               ┛ 

Objectives of the Study  

This research generally aims to enhance the safety of BCI 

(Brain-Components Interface) system-controlled smart 

wheelchairs. 

Specifically, this study is expected to: 

1. design a smart wheelchair that utilizes Emotiv’s 

Mental Command Suite for wheelchair motor controls and 

Light Detection and Ranging (LiDAR) sensors for obstacle 

avoidance. 

2. utilize Recurrent Neural Network - Long Short-Term 

Memory (RNN-LSTM) to predict the user's intended 

direction while avoiding obstacles. 

3. develop a user interface that will send visual and 

auditory prompts to the user if an obstacle is detected 

in the predicted intended direction. 

4. evaluate the performance of the algorithm using 

recall, specificity, precision, F1 score, loss, and 

confusion matrix. 
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5. assess the usability of the warning system through 

user testing, following the human-system interaction 

principles outlined in ISO 9241-11. 

 

Significance of the Study  

The results of this study will be useful to the 

following:  

Tetraplegic Patients. The findings of this study could 

directly contribute to the advancement of EEG-controlled smart 

wheelchairs thus enhancing the mobility and quality of life of 

Tetraplegic Patients.  

Doctors and Therapists. This research could provide them 

with insights into the treatment of tetraplegic patients. By 

understanding how Recurrent Neural Network can better analyze 

brainwave signals for wheelchair control, neurologists can 

potentially tailor EEG-based therapies for improved patient 

outcomes. 

Researchers. This study could contribute to the 

advancement of Brain-Computer Interface (BCI) technology. The 

implementation of RNNs in predicting brainwave patterns is not 
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limited to wheelchair control. Researchers could leverage the 

findings of this study to develop more effective and efficient 

BCI implementations. 

Engineers. This study could provide valuable insights 

into the practical application of Brain-Computer Interface 

(BCI) technology. Engineers could utilize the findings to 

enhance the design and development of responsive, real-time 

systems that rely on brainwave data, including those requiring 

better and faster obstacle detection for safer and more 

efficient navigation. 

Developers. This study could serve as a valuable 

reference for developers, offering approaches they can 

leverage to build more intelligent, real-time applications 

that respond to neural input. The implementation strategies 

are not limited to wheelchair control. They can be extended to 

software for accessibility, gaming, health monitoring, and 

other interactive BCI-driven platforms 
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Delimitation of the Study  

This study focused on the application of Recurrent Neural 

Networks (RNN) with Long Short-Term Memory (LSTM) units to 

predict user-intended directions in a Brain-Computer Interface 

(BCI) controlled smart wheelchair. The system utilized 

Emotiv's Mental Command Suite to interpret the user's mental 

commands to control the smart wheelchair. However, this study 

did not investigate or elaborate on the underlying mechanisms 

and algorithms of the Emotiv framework itself. This research 

was constrained to utilizing the pre-existing capabilities of 

the Emotiv system without modifying or enhancing its 

functionalities. Additionally, the system developed within 

this study was designed to operate effectively only if the two 

specific mental commands (push, and pull) have been trained 

and recognized by the Emotiv Mental Command Suite. These two 

commands are important parameters that were used by the RNN-

LSTM model. Any exploration beyond these two commands is 

outside the scope of this research. 

Moreover, the study included the modification of an 

existing electric wheelchair, transforming it into a smart 
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wheelchair equipped with LIDAR sensors, and ultrasonic for 

obstacle detection and an Arduino for the control. The 

modifications to the wheelchair was strictly based on the 

system requirements, which include controlling the wheelchair 

using the Mental Command Suite and incorporating an obstacle 

detection system. No additional modifications or enhancements 

to the wheelchair were undertaken beyond these specified 

requirements. The primary goal was to develop a comprehensive 

warning system that synergizes the RNN-LSTM based prediction 

of the user's next intended direction with the data obtained 

from the LIDAR sensors. This warning system was expected to 

improve the safety and reliability of the smart wheelchair, 

offering a practical solution for users who rely on BCI for 

mobility. However, the study did not extend to the development 

of new hardware or the exploration of alternative sensor 

technologies beyond what was specified. 
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Definition of Terms  

For better understanding, the following terms were 

defined conceptually and operationally: 

 

Arduino Mega 2560: A microcontroller board with many I/O pins, 

suitable for projects needing numerous inputs and outputs, 

such as robotics. It is versatile and widely used in the maker 

and electronics communities.[39] 

In this study, this refers to the software application 

designed to analyze the EEG data in real-time and generate 

warnings to the user about potential hazards or critical 

situations based on the anticipated control commands. 

 

BCI (Brain-Computer Interface): BCI enables direct brain-to-

device communication, allowing control and interaction based 

on brain signals. This technology holds promise for enhancing 

communication and mobility for individuals with 

disabilities.[40] 
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In this study, this refers to the system that translates brain 

signals from the EEG into control commands for the wheelchair 

and potentially generates warnings through the NeuroWarn BCI.  

 

Electroencephalography (EEG): EEG records brain electrical 

activity. This is used in neuroscience and clinical settings 

for diagnosing disorders and studying brain function. It is 

non-invasive and provides real-time insights into brain 

activity.[41] 

In this study, this refers to the measurement of brain 

electrical activity used to control the wheelchair and 

potentially trigger warnings from the NeuroWarn BCI system. 

 

Emotiv Mental Command Suite: A brain-computer interface 

framework developed by the company Emotiv can classify user 

intention through training.[42] 

In this study, this refers to the control framework that was 

utilized to control a wheelchair.  
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LSTM (Long Short-Term Memory): LSTM is an advanced RNN 

designed to preserve information over long sequences, ideal 

for tasks with long-term dependencies like natural language 

processing. It is particularly effective in capturing context 

and relationships in sequential data.[43] 

In this study, this refers to a specific type of RNN (Long 

Short-Term Memory) chosen for its ability to learn complex 

patterns in the EEG data and anticipate the user's intended 

control commands for the wheelchair. 

 

NeuroWarn BCI: The expected warning system application to be 

developed in this study. NeuroWarn BCI serves as the 

communication interface between the system and the user. 

In this study, it refers to the software application designed 

to analyze the EEG data in real-time and generate warnings to 

the user about potential hazards or critical situations based 

on the anticipated control commands. 

 

Quadriplegia (Tetraplegia): A paralysis that affects all four 

limbs and the trunk, often due to cervical spinal cord injury. 
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It can result in significant physical challenges and require 

assistive mobility devices.[44] 

In this study, this refers to the medical condition of the 

target users who were piloting the EEG-controlled wheelchair.  

 

RNN (Recurrent Neural Network): RNN is a neural network type 

that retains information through cycles, often used in 

sequence modeling tasks like time series prediction. It is 

effective for capturing patterns in sequential data.[45] 

In this study, this refers to the type of artificial neural 

network used to analyze the EEG data and anticipate potential 

control commands from the user. 

 

Time-of-Flight (ToF) sensors: these are used for a range of 

applications, including robot navigation, vehicle monitoring, 

people counting, and object detection. ToF distance sensors 

use the time that it takes for photons to travel between two 

points to calculate the distance between the points.[50] 

In this study, this refers to the sensors used for real-time 

detection of obstacles and measurement of distances in the 
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wheelchair's environment. These sensors were integrated with 

the EEG-based control system to enhance safety by providing 

the wheelchair with information about its surroundings. 
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CHAPTER 2 REVIEW OF RELATED STUDIES 

Review of Existing and Related Studies 

 

Current Systems 

 The typical human brain contains approximately 86 billion 

neurons [15], and the communication among these neurons is the 

fundamental activity of the brain. These neurons are excitable 

cells that possess inherent electrical properties, and their 

activity generates both magnetic and electrical fields. These 

fields can then be detected and recorded through the use of 

specialized recording electrodes [16]. 

 Motor control enables the stabilization and movement of 

the body and its extensions in a deliberate manner. 

Researchers in this field primarily investigate actions such 

as walking, reaching, facial expressions, speech, typing, and 

writing [62]. Studies suggest that motor commands for limb 

movements derive from a limited set of fundamental motor 

patterns, known as muscle synergies. These synergies activate 

groups of muscles simultaneously, helping to manage the body's 

many movement possibilities more efficiently [63]. 
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Two promising approaches for restoring movement in 

individuals with permanent paralysis are neural stem cell 

therapy and motor neuroprosthetics. Neural stem cell therapy 

aims to repair damaged neural pathways, while motor 

neuroprosthetics allow patients with intact cognitive function 

to control external devices using their thoughts or "motor 

intentions," bypassing the damaged pathways. Motor 

neuroprosthetics function by detecting electrical activity in 

the brain associated with movement intention and converting 

these neural signals into commands for external devices. In 

simple terms, a brain-computer interface (BCI) acts as a 

substitute for nerves and muscles, using neural signals along 

with specialized hardware and software to generate movement 

[64]. 

Electroencephalography (EEG) is a tool that records the 

electrical signals produced by the brain, allowing healthcare 

professionals and researchers to study and understand how the 

brain operates and the neural processes underlying various 

cognitive functions [17]. Electrodes detect the micro-Volt-

sized signals that result outside the head due to the 

synchronized neuronal action within the brain. Present 
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monitoring methods typically fall into two categories: 

inpatient, which occurs within a tertiary care facility and 

involves time-locked video monitoring with the patient usually 

confined to a bed due to wires connecting electrodes and 

recording equipment; or ambulatory, where the recording device 

is portable, allowing the subject to carry on with their 

regular daily activities [18]. Unlike other electrical 

recording devices that require inserting electrodes into the 

brain hence calling for surgery, EEG electrodes are simply 

attached to the scalp therefore it is considered a non-

invasive procedure [17]. 

Common application areas are sleep studies, epilepsy, 

brain-computer interface, and augmented cognition. Sleep 

disorders impact over 70 million individuals in the United 

States. The typical diagnostic approach involves 

polysomnography (PSG), which simultaneously monitors various 

bodily functions such as brain activity (via 

electroencephalography or EEG), heart rate (via 

electrocardiography or ECG), and respiratory function during 

sleep. However, the requirements for wearable EEG devices used 

in sleep studies differ somewhat from those employed in 
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epilepsy studies [18]. Epileptic seizures are characterized by 

a burst of electrical activity usually originating from a 

particular area within the brain [17], and as of 2024, 

approximately 50 million people worldwide have it—making it 

one of the most common neurological diseases globally [19]. By 

monitoring EEG signals, healthcare professionals can determine 

whether an epileptic seizure is taking place, and if so, 

identify its type [17]. Brain-computer interface (BCI), on the 

other hand, is a new technology with multidisciplinary 

connections including materials, neuroscience, signal 

processing, and so on [20]. Traditionally, brain-computer 

interface (BCI) technology utilizing electroencephalography 

(EEG) has been employed to assist individuals with severe 

motor impairments, enabling them to communicate and control 

devices through their brain signals. However, recent 

advancements have expanded the applications of BCI beyond this 

realm. Emerging trends indicate that BCI can now be utilized 

in various domains such as entertainment, industrial settings, 

and even language and clinical research that investigate EEG 

patterns in individuals with aphasia. [16,20,21,22]. 
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Multichannel EEG is generally used in brain-computer 

interfaces (BCIs), whereby performing EEG channel selection 

improves BCI performance by removing irrelevant or noisy 

channels, and enhances user convenience from the use of lesser 

channels [21]. The main purpose of applying channel selection 

is to reduce computational complexity while analyzing EEG 

signals, improve classification accuracy by reducing over-

fitting, and decrease setup time. Baig and Aslam assert that 

channel selection algorithms enable comparable classification 

performance while utilizing fewer EEG channels. In certain 

instances, channel selection can even boost system performance 

by eliminating noisy channels that may adversely impact the 

analysis. Their study demonstrates that, in most cases, a 

reduced set of 10 to 30 channels can achieve the same level of 

performance as utilizing the full channel array [23]. In a 

study about real-time control of unmanned aerial vehicles 

(UAVs) that used non-invasive BCI headsets from Emotiv, called 

EPOC+ (14-channel) and INSIGHT (5-channel), the EPOC+ had 

98.8% in overall classification accuracy while 84.5% for the 

5-channel. However, one of the main difficulties in monitoring 

electroencephalography (EEG) data is identifying and removing 

unwanted signals or artifacts. These artifacts can originate 
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from factors related to the subject being monitored, such as 

body movements, sweating, electrical activity from the heart 

(ECG), and eye movements. Additionally, technical artifacts 

can arise from external sources like electrical interference 

at 50/60 Hz frequencies and issues with the monitoring 

equipment itself. Addressing these various types of artifacts 

requires different approaches and techniques [24].   

A separate study explored the use of a single-channel 

electroencephalography (EEG) device, the NeuroSky MindWave 

Mobile-2 headset, in conjunction with an Arduino Uno 

microcontroller for wheelchair control. The system was 

designed to enable maneuvering in various directions such as 

start, turn left, turn right, and stop. The researchers 

employed recurrent neural networks trained on non-sequential 

data for this purpose. However, instead of utilizing a full-

sized wheelchair, the study was conducted using a miniature 

wheelchair model. The authors acknowledged that the use of 

only a single EEG channel resulted in reduced accuracy 

compared to systems with more channels [28]. Others have 

developed and implemented a platform that enables control of a 

wheelchair system through a brain-computer interface (BCI) and 
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automated navigation within indoor environments. The 

experimental results demonstrated that the user could 

successfully stop the wheelchair at high success rates across 

two experiments (Experiment A = 94.7% success rate, Experiment 

B = 92% success rate) [29]. Another study that used Emotiv 

INSIGHT and Arduino for BCI-controlled Smart Wheelchair 

successfully maneuvered ‘forward’, ‘backward’, ‘left’, and 

‘right’ using the commands from the integrated BCI unit with a 

negligible time of 2s delay. Performing simultaneous changes 

in direction from opposing directions will cause a slightly 

larger delay of 5s [30]. Moreover, the Emotiv Mental Command 

Suite offers a user profile feature that allows individuals to 

personalize their experience with EEG technology. By creating 

a user profile, individuals can tailor the settings of the EEG 

device to their specific needs and preferences, enhancing the 

overall effectiveness and comfort of the system.[41] This 

feature is particularly beneficial in applications such as 

brain-computer interfaces (BCIs), where individualized 

settings can improve the accuracy and efficiency of brain 

signal interpretation. 
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The use of electroencephalography (EEG) has created new 

opportunities not only for technological innovation but also 

for helping people who thought they could no longer regain 

mobility. In a relevant existing system that used artificial 

intelligence (AI) algorithms, specifically recurrent neural 

networks (RNNs), helped the researchers choose the most 

suitable algorithm for their study. Although the system was 

tested on a small-scale wheelchair model, it used RNNs trained 

on non-sequential EEG data. This provided useful information 

on how well the algorithm could read brain signals for real-

time movement control. While the system's accuracy was lower 

due to using only one EEG channel, the study still showed that 

simple and affordable EEG-based brain-computer interface (BCI) 

systems could support mobility. 
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Related Systems or Solutions 

Conventionally, the most widely employed methods for 

reducing noise in signals are wavelet transform (WT) 

denoising, independent component analysis (ICA) denoising, and 

empirical mode decomposition (EMD) denoising [25]. However, 

among these techniques, the wavelet transform (WT) has emerged 

as the most prevalent and effective approach for removing 

noise from non-stationary signals, such as those obtained from 

electroencephalography (EEG) and electrocardiography (ECG) 

recordings [26]. In 2020, a study about EEG signal-driven 

brain-computer interface for disabled wheelchair users even 

used a combined wavelet transformation and recurrent neural 

networks (RNN) approach, where the wavelet transform extracted 

time-frequency features and the RNN classified four drone 

movement directions and focus/non-focus status, achieving 

79.6% accuracy [35]. 

While the number of EEG channels impacts accuracy, 

training is also crucial for enhancing the performance and 

precision of mental commands used to control systems like 

wheelchairs. Proper training can help improve accuracy even 

when using a limited number of channels [30]. While there may 
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be some concerns surrounding the emerging trend of smart 

wheelchairs, the integration of algorithms can provide 

assistance and contribute to safe navigation for these systems 

[27]. For instance, a research study introduces a long short-

term memory deep learning (LSTM) network to recognize emotions 

using EEG signals [31]. The brainwaves from a user of a BCI-

controlled smart wheelchair are susceptible to emotions which 

may lead to the malfunctioning of the device since the EEG 

will be suffering from too much noise [24], however with the 

help of the integration of LSTM into the system, the 

classification of four negative class of emotions using genres 

sadness, disgust, angry, and surprise along with the 

classification of three basic class of emotions i.e., 

positive, negative, and neutral, brainwave noise may be 

reduced [31]; hence improves safety navigation other than 

purely depending on obstacles as risk factors [27]. 

RNN, one of the promising deep learning (DL) models, can 

predict future information based on past and present data. 

However, in the RNN structure, it is difficult to learn stored 

data for a long time because of the gradient vanishing issue 

or gradient exploding issue. A model that fundamentally solved 
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this problem of RNN is LSTM [33], making it one of the most 

advanced networks to process temporal sequences [34]. Another 

paper employed deep learning models, specifically long short-

term memory (LSTM) and gated recurrent neural networks (GRNN), 

for the task of classifying motor imagery from 

electroencephalography (MI-EEG) data. As mentioned earlier, 

the LSTM architecture was designed to mitigate the vanishing 

gradient problem, while GRNN allowed each recurrent unit to 

adaptively capture dependencies across different time scales. 

The experimental results demonstrated that GRNN and LSTM 

achieved higher classification accuracies compared to existing 

approaches [32]. Furthermore, in another separate study, LSTM 

was implemented for a brain-computer interface (BCI) 

controlled smart wheelchair using simple eye open/close 

commands. This approach achieved higher accuracy ranging from 

77.61% to 92.14% compared to traditional classifiers (59.71%), 

with an optimal time window of around 7 seconds for user 

tasks. Real-world testing revealed a trade-off between 

accuracy and response time was necessary to ensure reliable 

detection [36]. These findings suggest that such recurrent 

neural network (RNN) models can be beneficial for further 
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research and applications involving the processing of MI-EEG 

signals [32]. 

As for object detection, Papageorgiou and T. Poggio 

present a powerful system for detecting objects like faces, 

people, and cars in still images. It uses a technique called 

Haar wavelets combined with a machine learning algorithm 

called support vector machines. This allows very accurate 

detection with very few false positives. For face detection, 

it achieves 90% accuracy with only 1 false positive per 

100,000 images processed. For people detection, it gets 90% 

with 1 false per 10,000 images. This is the first people 

detector that is purely based on pattern recognition without 

using motion tracking or assumptions about the scene. However, 

the study finds detecting cars more challenging due to 

viewpoint variations, so the researchers utilized a component-

based approach—identifying parts like headlights and wheels, 

which turned out to be better [46]. 

Robots can be useful in dangerous situations where it's 

not safe for humans [49]. A three-wheeled autonomous 

navigational robot with efficient modular architecture by 

Balasubramanian, et. al. has the key capabilities of obstacle 
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detection, pattern recognition, and obstacle avoidance. The 

robot can successfully identify and selectively pick up balls 

of a particular color while ignoring other objects. The design 

utilizes a single-board computer as the central controller, 

communicating with ultrasonic sensors, motors, and multiple 

microcontrollers to control motion; a Java program running on 

the onboard computer that communicates with the master 

microcontroller through RS232; a modified H-bridge circuit 

that efficiently drives the DC motors of the base unit; and 

Hough transform algorithm for object detection that executes 

in real-time Java in just 1 second compared to 4 minutes in 

Matlab. The modular architecture also allows easily adding 

various modules to enhance functionality [47]. Although robots 

generally use various sensors to detect obstacles and 

determine their own position, conventional sensors have 

limitations in range, resolution, and complexity. So 

Hutabarat, et. al. developed an autonomous mobile robot that 

uses a LiDAR (Light Detection and Ranging) sensor to avoid 

obstacles. It moves according to the Braitenberg vehicle 

strategy. A single Raspberry Pi 3 computer board runs the 

sensor data collection and control algorithm. Experiments 

showed that LiDAR can consistently measure distances, without 
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being affected by an object's color or ambient light levels. 

The mobile robot could avoid different-sized colored objects. 

However, it could not detect and avoid transparent objects. 

Overall, this autonomous robot can navigate safely inside a 

room, avoiding walls and obstacles [49]. 

Sakic, et. Al also proposed a solution for determining 

the distance to obstacles by combining data from a camera and 

a LIDAR sensor. The algorithm uses the camera images for 

object detection and the LIDAR's point cloud data to calculate 

the position of detected objects. Based on the position of the 

nearest object in front, the motion planning module can 

control the vehicle's movement. During validation, this 

approach showed good results in accurately estimating obstacle 

distances while meeting real-time processing requirements. 

However, the current implementation has some limitations. It 

only considers the area directly in front of the vehicle 

rather than the true trajectory. It is also necessary to add 

time synchronization between data obtained from different 

sensors so the algorithm will be able to process samples from 

different sensors—which originate from the synchronized time 
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moment with a certain threshold. Crucially, if the camera 

fails to detect an object, the LIDAR data is also ignored[48]. 

Distance measurement sensors based on the Time of Flight 

(ToF) principle have been increasingly adopted lately due to 

their cost-effectiveness and precision. These sensors are 

likely to play a crucial role in obstacle detection systems 

going forward [50]. Garcia, et. al. showcased the reliability 

and effectiveness of ToF technology in diverse environments, 

demonstrating its potential to enhance safety and efficiency 

in obstacle detection applications by designing and rigorously 

evaluating a robust object detection system that integrated 

ToF sensors. The study used 150 images to obtain 660 samples, 

with 210 samples containing a curb and 450 without a curb. 

Various window sizes, feature vectors, filters, classifiers, 

and amplitude and depth images from the camera were tested to 

find the best performance using the leave-one-out cross-

validation method. The KNN classifier performed best, with 

98.333% accuracy and an AUC ROC of 0.9987. This result used a 

20x40 pixel window size, median filtering to reduce noise, and 

HOG features extracted from the amplitude and distance window 

with a 4x4 cell size, resulting in a 2592-value feature 
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vector. A method was developed to measure the distance between 

the vehicle and the curb. When tested on 30 new images not 

used for training, the classifier correctly classified 24 

images but made errors on 6 images, achieving 80% performance 

[51]. Another research study employed an innovative 3D range 

camera for obstacle detection and segmentation algorithms to 

be used in Automated Guided Vehicles (AGVs). This 3D range 

camera operates on the Time-of-Flight (ToF) principle, 

enabling it to simultaneously capture intensity images and 

range data of targets in indoor environments. The range camera 

is particularly attractive for obstacle detection in 

industrial applications due to its relatively low cost 

compared to similar sensors. Additionally, it can deliver 

range and intensity images at a rate of 30 frames per second, 

with an active range of 7.5 meters, and it has no moving 

parts, unlike many off-the-shelf laser sensors that 

incorporate spinning mirrors. However, after the 

implementation, researchers analyzed some outdoor data, and 

the preliminary results show good promise in using this sensor 

for outdoor forest environments, in other areas that are 

shaded, and in night conditions—indicating that it's not 

limited to indoor settings anymore [52]. The development of 
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ToF sensors has also been driven by advancements in machine 

learning and computer vision technologies. Modern ToF sensors 

are increasingly used in computer vision systems, including 

augmented reality and 3D object reconstruction. These 

advancements enable ToF sensors to provide real-time 

information about objects in space, making them valuable 

components in obstacle detection systems for applications such 

as car parking assistance, mobile robotics, and workplace 

safety enhancement [50]. 

It just goes to show that this study on developing a 

mind-controlled wheelchair using electroencephalography (EEG) 

and recurrent neural networks (RNNs) is supported by previous 

research that addresses two key challenges: reducing noise in 

EEG signals and improving navigation safety. EEG signals are 

often affected by noise, especially from the emotional state 

of the user, which can lower the accuracy of brain-computer 

interface (BCI) systems. Earlier studies have shown that 

traditional methods like wavelet transform (WT) are effective 

in filtering out noise from non-stationary signals such as 

EEG. In addition, using long short-term memory (LSTM) 

networks—a type of RNN—helps the system recognize and manage 
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emotional patterns, which reduces brainwave noise and improves 

the clarity of the signals. This supports more accurate and 

stable control of the wheelchair. For navigation, systems that 

use object detection techniques like Haar wavelets with 

support vector machines (SVMs), along with sensor fusion from 

cameras and LIDAR, have been shown to improve safety. These 

technologies allow the wheelchair to detect nearby obstacles 

and take appropriate action, even if the brain signal is 

delayed or unclear. These findings support our study by 

showing how signal processing, and smart navigation systems 

can work together to build a safer and more reliable mind-

controlled wheelchair.  
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Related Studies 

Relevant research was conducted on using the 5-channel 

Emotiv INSIGHT electroencephalography (EEG) headset to control 

a wheelchair intended for elderly individuals and those with 

motor impairments. Despite the limited number of EEG channels, 

the study determined that accurate wheelchair control was 

highly feasible with this system. The wheelchair incorporated 

a drive motor to enable safe navigation. It integrated a 

10.525 GHz Doppler radar detector (40 mA) and a microwave 

sensor (HB100) to detect obstacles in the surrounding 

environment. These sensors, coupled with a custom algorithm 

developed by the researchers, issued collision warnings to the 

user, thereby assisting in obstacle avoidance [27]. 

Path planning involves charting the trajectory to reach a 

target location from the wheelchair's current position while 

accounting for potential obstacles. Ferracuti et al. [37], 

employed the Dynamic Window Approach (DWA) navigation 

algorithm for indoor obstacle avoidance in their study. 

However, their smart wheelchair was limited to indoor 

environments. During indoor navigation toward a desired 

destination, obstacles along the planned path can elicit 
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electroencephalography (EEG) potentials when detected by the 

user. These potentials could serve as supplementary inputs to 

the navigation algorithm, facilitating trajectory modification 

to uphold safety. Their research demonstrated the feasibility 

of real-time feedback between the smart wheelchair and the 

brain-computer interface (BCI) acquisition system, enabling 

users to actively contribute to trajectory control by 

circumventing environmental factors that may compromise their 

security [37].  

Contrary to the previously mentioned studies that used 

RNN, Kocejko et. al. utilized convolutional neural network 

(CNN) models for signal classification acquired from sixteen 

EEG channels for the implementation of an obstacle detection 

system and its integration with a brain-machine interface with 

movement activity commands ‘LEFT’, ‘RIGHT’, ‘RELAX’, and 

‘BREAK’. The system employed the on-board camera to capture 

RGB images, which were transmitted to a server for inverse 

depth estimation using the Pytorch MiDaS v3.1 

dpt_beit_large_512 model. The model provided relative depth 

information from the input images. The inverse depth outputs 

were segmented into left, right, and center sections, with the 
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bottom portions cropped to minimize floor misidentification as 

obstacles. The mean depth of each section was computed and 

compared against a predefined threshold tailored to detect 

large obstacles like walls or trash cans. For smaller obstacle 

detection, each section underwent grid subdivision, with the 

mean value of each grid cell calculated and tallied if 

exceeding a specified threshold. The integration of a 

collision detection system employing movement imagery and a 

16-channel electroencephalogram (EEG) proved beneficial in 

augmenting conventional robot control. A subject-dependent 

approach yielded significantly higher accuracy, as a brain-

computer interface's (BCI) effectiveness hinges on individual 

factors such as cognitive capabilities, attention span, and 

the ability to volitionally modulate brain activity. Notably, 

users require extensive training to attain proficiency in 

controlling a BCI system via neural signals. The achieved 83% 

accuracy is comparable to state-of-the-art solutions, albeit 

with a limited participant group and some unintended vehicle 

movements. Nonetheless, the results underscore the real-world 

applicability of the proposed solution while emphasizing the 

need for continued refinement and comprehensive investigations 
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to facilitate seamless integration into larger-scale 

applications [38]. 

The study proposes an autonomous system that integrates 

an electroencephalogram (EEG) interface to capture the user's 

desired movement direction while incorporating robust object 

detection and avoidance capabilities. A key innovation lies in 

the integration of an informative warning system that provides 

visual feedback to the user, transparently communicating 

reasons for stopping or confirming safe conditions for 

intended turns rather than abruptly halting upon encountering 

an obstacle. This transparent communication enhances the user 

experience and situational awareness. By coordinating cutting-

edge assistive technologies like EEG control with advanced 

environmental mapping and obstacle avoidance algorithms, the 

research undertakes the development of an autonomous system 

that can effectively navigate environments while prioritizing 

user agency and safety throughout the process. 

These studies support the development of a mind-

controlled wheelchair by demonstrating the feasibility of 

using EEG data, whether from low or high-channel systems, for 

reliable movement control and obstacle avoidance. They show 
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that EEG signals can provide both directional commands and 

responsive feedback to enhance navigation safety. The 

integration of neural networks, such as RNNs and CNNs, 

improves signal classification and decision-making accuracy. 

Additionally, combining EEG with real-time environmental 

sensing, like object detection, contributes to safer mobility 

solutions. These findings validate the potential of RNNs with 

EEG for creating an efficient and user-responsive wheelchair 

system. 
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CHAPTER 3 RESEARCH DESIGN AND METHODOLOGY 

Description of the Proposed Study 

 

This study investigates the integration of real-time 

movement prediction and obstacle detection to develop a 

warning system for Brain-Computer Interface (BCI) controlled 

smart wheelchairs. It employed Emotiv Insight, a 5-channel 

electroencephalogram (EEG) headset that was used to capture 

continuous time series electroencephalographic data from the 

user. The same EEG headset was also used to control a 

customized smart wheelchair using Emotiv’s existing control 

framework called Mental Command Suite. 

The main objective is to predict the user's intended 

direction using Recurrent Neural Networks (RNNs) with Long 

Short-Term Memory (LSTM) units. The researchers, therefore, 

trained the model using brainwave data collected from the five 

channels of the EEG device that was accessed through Node-RED. 

The model worked alongside the Emotiv Mental Command Suit. The 

Emotiv Mental Command Suite was responsible for the wheelchair 

control while the RNN-LSTM model analyzed the extracted 
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features and predicted the user's intended movement (forward, 

backward, right, left). 

To demonstrate the performance of the developed warning 

system, researchers modified an electric wheelchair, 

transforming it into a smart wheelchair. The said wheelchair 

was equipped with a microcontroller, motor drivers for 

control, and Light Detection and Ranging (LiDAR) and 

ultrasonic sensor for obstacle detection. The system utilized 

both predictions from the developed RNN model and obstacle 

detection sensors to create a simple logic. If the predicted 

movement direction matches with an obstacle, the wheelchair 

receives a "stop" command and sends a warning prompt to the 

user. However, if the path is clear, the predicted command is 

executed. Furthermore, a control laptop was attached to the 

wheelchair which acted as both the main processing unit and 

the user interface for the warning system.  
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Methods and Proposed Enhancements  

Target 

The study was conducted to investigate the integration of 

real-time prediction using RNN-LSTM and an obstacle detection 

system to create a warning system for EEG-controlled smart 

wheelchairs. Ten participants, six male and four female, aged 

between 18 and 25 years old, were involved in the training, 

testing, and validation of the developed system. The 

researchers conducted this study within a controlled 

environment in their private homes.  

 

Data Gathering Instrument  

This study utilized the following instruments to gather 

data: 

1.​Emotiv Insight - 5-Channel Wireless EEG Headset 

This study used the Emotiv Insight, a 5 Channel 

Wireless EEG Headset. It is a non-invasive brain-computer 

interface (BCI) headset. The device measured electrical 

activity within the brain and converted it to 
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electroencephalography (EEG) data. It then sent this data 

to a control laptop for classification and training.  

2.​Control Laptop  

A control laptop was attached to the custom-built 

smart wheelchair. The device received and processed data 

from the EEG Headset. The laptop served as both the 

processing component and user interface of the system. 

3.​Node-RED 

The researchers extracted brainwave data from the 

EEG device using Node-RED. Node-RED utilized Emotiv’s 

Cortex API to extract data from the EEG device. It 

provided a user-friendly interface ideal for this study.  

4.​Obstacle detection sensors (LiDAR and Ultrasonic Sensor)  

The study incorporated a LiDAR (Light Detection and 

Ranging) sensor equipped with Time of Flight (ToF) 

technology and ultrasonic sensor for obstacle detection. 

The LiDAR emitted laser pulses and measured the time it 

took for these pulses to bounce back from objects in the 

wheelchair's surroundings. Meanwhile, the ultrasonic 
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sensor used the same technique but with sound. This 

allowed these sensors to detect obstacles in the 

surrounding environment. 

 

Procedure 

The researchers mainly utilized Python for the main 

program. A local web application run on Javascript was used 

for the user interface. The following steps were:  

a.​Emotiv Mental Command Suit Training  

Before extracting the continuous EEG data for RNN 

training, participants must first train the existing 

control system provided by Emotiv called Mental Command 

Suite. In this process, the participants trained the 

Mental Command Suite framework to classify push, and 

pull. The Mental Command Suit Framework was responsible 

for the movement controls of the smart wheelchair.  

b.​Data Collection 

After training Emotiv’s Mental Command Suite, the 

researchers collected a time-series EEG data using 

Node-RED. The participants recorded a time series of data 
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using the three commands of the mental command suite 

(push, pull, neutral) for a specific timeframe. Node-RED 

automatically wrote the comma-separated values (CSV) file 

used to train the neural network model. This approach 

enabled researchers to streamline the data collection, 

ensuring that the model receives suitable data for its 

purpose.  

c.​Data preprocessing 

The collected time series data were then split into 

a training and testing set. Seventy percent of the data 

collected were used for training the RNN-LSTM model. The 

remaining thirty percent were used to test the 

algorithmic performance of the neural network model.  

d.​Model Training 

This study utilized the RNN-LSTM neural network model. 

Long Short-Term Memory (LSTM) networks, which are a form 

of Recurrent Neural Network (RNN), excel at predicting 

sequential input such as movement intentions. LSTMs 

solved the vanishing gradient problem in RNNs by making 

use of memory cells that can learn long-term 

dependencies. These cells regulated the flow of 
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information through gates, allowing the network to store 

important past information for future predictions.  

The following were the components of a Long Short-Term 

Memory (LSTM) network: 

1.​Activation Function  

A softmax function is a good choice for the 

output layer as it maps internal activations to 

probabilities between 0 and 1, ideal for predicting 

the four-movement categories (Left, Right, Forward, 

and Backward). 

  Figure 2. Softmax Activation Function Formula [53] 

 

Figure 2 illustrates the formula of a softmax 

activation function. It takes a vector of real 

numbers as input and converts them into a 

probability distribution of K possible outcomes, 

where K is the number of classes. In the RNN-LSTM 
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model, K would represent four possible movements: 

forward, backward, left, and right. The function 

takes a vector of activation values (x_i) from the 

neural network's final layer, representing each 

movement class (forward, backward, left, right). It 

exponentiates each value (e being the base of the 

natural logarithm), then divides them all by the sum 

of those exponentials. This transforms the 

activations into a probability distribution (s(x_i)) 

where the output for each class signifies the 

likelihood of that class being the correct 

prediction. This normalization step guarantees that 

the output values sum to 1, which is a crucial 

property of a probability distribution. 
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2.​Loss Function 

Categorical cross-entropy is a common loss 

function for multi-class classification problems. It 

measures the difference between the predicted 

probability distribution and the actual distribution 

of the movement class. 

Figure 3. Cross Entropy Function Formula [54] 

​ ​  

Figure 3 illustrates the cross entropy function 

formula. It measures the difference between the 

model's predicted probability distribution (f(s)) 

for movement categories (forward, backward, left, 

right) and the actual intended movement (t) in a 

given sequence. The lower the CE, the better the 

model's predictions align with reality. f(s) 

represents the probability scores assigned by the 

model to each movement category. The formula 

(log(f(s))) calculates a penalty for assigning a low 
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probability to the correct movement across multiple 

training examples. By minimizing this penalty, the 

LSTM model learns to adjust its internal parameters 

and improve its predictions for intended movements. 

3.​Optimizer  

Adam (Adaptive Moment Estimation) is a popular 

optimizer due to its efficiency in handling sparse 

and noisy data, potentially encountered with 

movements. 

Unlike regular RNNs, LSTMs can learn long-term 

dependencies within the data due to their internal gating 

mechanism. The following are the gating mechanism and 

their description: 

1.​Forget Gate 

Decides what information from the previous cell 

state (memory) to discard. 

2.​Input Gate 

Selects what new information from the current input 

to store in the cell state. 
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3.​Output Gate 

Determines what information from the current cell 

state to output. 

 

      

 

 

 

 

 

 

 

Figure 4. LSTM Model [55] 

 

These gates allow LSTMs to learn complex temporal 

patterns in movement thought data.  

The time window defines the amount of historical 

movement through the data that the LSTM considers for 

prediction. The researchers experimented with different 

values (e.g., 0.5 seconds, 1 second) to find the optimal 
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window that captures relevant patterns without 

introducing unnecessary noise. 

The window size is the number of data points within 

the time window. It should be large enough to capture the 

relevant movement thought sequence but not excessively 

long to avoid computational inefficiency. The researchers 

also experimented with the values to find the optimal 

value for the accuracy of the model with a reasonable 

size and adjust this based on the data characteristics. 

 

e.​Smart Wheelchair Modification 

To showcase the system's functionality, researchers 

modified a smart electric wheelchair with the essential 

control components and sensors needed for the warning 

system. The following figure illustrates the blueprint 

for the smart wheelchair and its components; 
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Figure 5. Wheelchair Blueprint 

1.​ Electric wheelchair  

An electric wheelchair featuring a 24-volt 

250-watt Brushless DC Motor, an onboard motor 

driver, and a 12-volt battery with a 20-kilometer 

range, served as the foundational platform for the 

smart wheelchair. The researchers replaced the 

control system and integrated the essential sensors 

needed for the warning system. 
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2.​ BTS7960 Motor Driver  

The BTS7960 Motor Driver allowed the 

researchers to control the existing onboard motor 

driver in the electric wheelchair through an Arduino 

microcontroller.  

3.​Arduino Mega 

This microcontroller served as the 

communication interface between the warning and 

control system in the laptop computer and the 

components and sensors within the wheelchair. 

4.​ Obstacle Detection Sensors 

This study employed 2 kinds of 

obstacle-detecting sensors 

a.​LiDAR - Time-of-Flight (ToF) sensors - this 

sensor was used to detect obstacles in front of 

the wheelchair due to its long range. 

b.​Ultrasonic Sensor - this sensor was used to 

detect obstacles behind the wheelchair. 

 

┗​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​   ┛ 

 



West Visayas State University 
COLLEGE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY 

La Paz, Iloilo City, Philippines 
 

51 

┏​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​   ┓ 
5.​Control Laptop 

This laptop functioned as both the processing 

unit for the entire system and the interface 

facilitating interaction between the user, the 

system, and the smart wheelchair. It controls the 

movement of the wheelchair, processes sensor data, 

runs the developed RNN model, and displays the 

output of the warning system.  

6.​Laptop Mount 

This was used to mount the control laptop into 

the wheelchair.  

 

f.​Software Development  

The study developed a simple local web application 

to act as the visual interface for the warning system. 

This program collected data from the wheelchair sensors 

and predictions from the RNN model. The program displayed 

the location of the obstacle using the wheelchair sensors 

and issued a warning—it halts the wheelchair if the 

predicted direction of its movement coincides with the 
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location of the obstacle, otherwise, it will continue to 

move in the user’s desired direction. 

 

g.​System testing  

The researchers ensured that the system demonstrated 

the capacity to predict EEG brain wave data accurately 

and efficiently by testing and evaluating the necessary 

components in the system. The algorithm was tested using 

recall, specificity, precision, F1 score, loss, and 

confusion matrix. The usability was then accessed using 

the ISO 9241:11 usability standards. 
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Proposed Enhancement  

The advantages of the proposed warning systems are the 

following:  

a.​Reduced Cognitive Load  

Automating obstacle detection and issuing warnings 

reduces the cognitive load for users. This allows them to 

focus on controlling the wheelchair and navigating their 

surroundings. 

b.​Enhanced Safety 

The system significantly reduces the risk of 

collisions and accidents by providing timely warnings 

about potential obstacles. This approach provides a 

greater sense of security for the users. 

Improvements in EEG-controlled wheelchair technology make 

it more dependable, helping users trust that it would work 

well and minimize risks. As these advancements develop 

further, users can feel more confident in relying on these 

systems to operate smoothly and safely. 
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Components and Design 

System Architecture 

Figure 6. System Architecture 

​ As depicted in Figure 6, the proposed system employs a 

multi-layered architecture to safeguard against wheelchair 

collisions. A portable EEG headset (1) acts as the initial 

point of contact, capturing the user's brain activity. This 

data is then wirelessly transmitted via Bluetooth to the 

EmotivPro application (2). Here, the system leverages Emotiv's 

Mental Command Suite Control Framework (3) to establish 

communication with the Arduino Mega (4) and transmit control 
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commands for maneuvering the wheelchair. Concurrently, the 

EmotivPro application transmits data to a specifically 

developed RNN-LSTM model (b) for analysis. This model 

generates predictions that are passed to the warning system 

(c). The warning system functions by continuously monitoring 

these predictions alongside sensor data received from the 

wheelchair (a). If a sensor detects an impending obstacle that 

aligns with the model's prediction of a potential collision, 

the system springs into action. A warning prompt (d) is 

activated to alert the user, while a stop command is 

simultaneously transmitted to the Arduino Mega (4). This 

immediate halt ensures the safety of the user by preventing 

the wheelchair from colliding with the obstacle. 
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Software Architecture 

Figure 7. Software Architecture 

Figure 7 illustrates the software architecture of the 

warning system. The first stream of data comes from the 

EmotivPro application. It sends that data to the developed RNN 

model through the Node-RED. The prediction of the model is 

then sent to the developed warning system. Simultaneously, the 

Pyfirmata application continuously sends sensor data into the 

warning system. The warning system then compares these sensor 

data with the model prediction. If the predicted direction 

coincides with an obstacle, the warning sends a command back 
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to the Pyfirmata application to stop, and send a warning 

message through its user interface. If not, the command will 

execute.  

 

Procedural Design 

Figure 8. Procedural Design 

Figure 8 illustrates the procedures of the proposed 

system. Upon launching the application, it first checks if the 

user has an Emotiv Account. If the user has no account, it 

will require the user to create one. If the user has an 

account, it will proceed to the home screen. From there, the 

system will check if the user has a user profile. If the 

system doesn’t find a user profile, it will require the user 
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to create one and briefly train the mental commands. If the 

system finds a user profile, it will begin creating 

predictions and compare them to obstacle sensor data. Once the 

predicted direction and an obstacle match, the system will 

send a prompt and stop the wheelchair. However, if the 

predicted direction is clear of obstacles, the desired command 

will be executed. This comparison will actively continue until 

the user decides to exit. 

 

Object-Oriented Design 

Figure 9. Object-Oriented Design 
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Figure 9 shows the use case diagram of the system. The 

user primarily used the system to control the smart 

wheelchair. However, the user must first create a user profile 

in the EmotivPro application for training.  

 

Process Design (DFD)  

 

 

 

 

 

 

 

 

Figure 10. Data Flow Diagram Level 0 

Figure 10 offers a high-level view of this EEG-controlled 

smart wheelchair system. It uses a square to represent the 

User, who provides raw EEG signals. Another square depicts the 
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Environment, in which sensor data is derived. The core of the 

system is represented by a rounded rectangle, encompassing all 

internal processes. 
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Figure 11. Data Flow Diagram Level 1 

The Level 1 DFD illustrates how the EEG-controlled smart 

wheelchair system translates the User's intent from EEG 
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signals into movements within the surrounding environment. 

Also, with the integration of sensors to monitor the terrain, 

the system can match the intent of the user and the actual 

terrain to decide if proceeding with the action would be safe. 

Then if the system considers the proceeding action to be 

dangerous, it sends a warning to the user prompting it to 

stop. 
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Methodology 

System Development Life Cycle 

Figure 12. System Development Life Cycle 

The researchers utilized the Waterfall System Development 

Life Cycle to identify the project goals. The following are 

the phases in the Waterfall development method: 

a.​Requirements Gathering 

In this phase, the researchers looked into the 

existing landscape of BCI-Controlled Smart Wheelchairs. 

This is done by exploring various academic papers that 

discuss the concept and implementation of BCI-Controlled 

Wheelchairs. The researchers explored algorithms, 

methodologies, research gaps, and any possible system 

limitations.  
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b.​Analysis 

The researchers then analyzed the collected 

requirements. In the case of this study, it was 

identified that current BCI-Controlled Smart Wheelchairs 

lack safety protocols. Hence it was decided that the 

research group would develop a warning system to enhance 

safety.  

c.​Design 

The researchers planned out the architecture of the 

warning system. This integrated an RNN-LSTM architecture 

into the existing BCI control framework and created a 

prediction. The prediction was then integrated with 

obstacle-detecting sensors to develop a warning system. A 

local computer application was then developed for the 

implementation of the warning system.  

d.​Implementation 

The researchers started the development of the 

warning system based on the identified design and 

specifications. The warning system was implemented in the 

developed BCI-controlled wheelchair.  
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e.​Testing 

A random sampling technique was implemented to 

select test cases for the evaluation of the warning 

system's performance. The system's overall usability and 

user experience were then assessed in accordance with the 

standards outlined in ISO 9241-11. 

f.​Deployment  

Following the development phase, the researchers 

deployed the warning system onto the BCI-controlled 

wheelchair. This process involved integrating the 

developed system into the wheelchair's existing 

infrastructure. 
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CHAPTER 4 RESULTS AND DISCUSSION 

Implementation 

 

Development Tools 

The development of the NeuroWarn BCI system focused on 

three main components: the BCI wheelchair control system, the 

warning system interface, and the RNN-based prediction model. 

Each component worked together to create a cohesive system 

aimed at enhancing mobility and safety for wheelchair users 

through advanced control and situational awareness.  

The BCI wheelchair control system was designed to enable 

wheelchair movement through mental commands processed by 

EmotivBCI. EmotivBCI software provided the necessary framework 

to train and interpret these mental commands, which the user 

could then use to control the wheelchair’s movement. A Python 

program acted as the intermediary between EmotivBCI and the 

wheelchair’s hardware, retrieving mental command data from 

EmotivBCI and transmitting it to the Arduino hardware via 

serial communication. This communication ensured that each 

mental command was promptly translated into motor responses.  
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To manage the hardware control, the Arduino IDE and 

Arduino language (C++) were employed. The C++ code on the 

Arduino interpreted the movement data received from the Python 

program and directly controlled the wheelchair motors, 

resulting in a responsive and smooth movement that aligned 

with the user’s mental input.  

The second component, the warning system interface, was 

developed as a local web application to provide real-time 

safety alerts based on data from sensors and the RNN 

prediction model. The interface was built using HTML, CSS, and 

JavaScript, with JavaScript leveraging WebSockets for 

real-time data transmission. This application continuously 

received input from a time-of-flight sensor programmed through 

Arduino, which monitored the wheelchair’s surroundings to 

detect potential obstacles. In addition, the web application 

used WebSockets to gather input from the EEG device and the 

BCI control system, ensuring it remained synchronized with the 

user’s mental commands.  

A NodeJS runtime environment powered the local server, 

managing WebSocket connections to integrate data from the 

neural network model. This model predicted the wheelchair’s 
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potential path based on the user’s commands and environmental 

input. The combined data from the BCI system, sensor feedback, 

and predictive model allowed the web application to deliver 

timely alerts, enhancing the user’s awareness of surrounding 

hazards and supporting safer navigation.  

For the third component, the RNN-based prediction model, 

Node-RED was used to collect and process data from the user’s 

interactions and surroundings. The RNN model was coded and 

trained in Python, using this data to predict the user’s 

likely path based on the current environment and mental 

commands. This predictive capability improved the system’s 

ability to anticipate and mitigate potential obstacles, 

reinforcing safety measures through proactive navigation 

assistance.  

Together, these three components form an integrated 

system called NeurowarnBCI.  
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Hardware Requirements 

The Neurowarn BCI system requires four hardware 

components. The primary component is the EEG headset. The 

headset reads the user's electrical brainwave data and 

transmits it to the NeuroWarn BCI system for interpretation. 

The system is only compatible with Emotiv EEG headsets because 

the system relies on Emotiv’s mental command framework. In 

this study, the Emotiv Insight, a five-channel EEG headset, 

was used. However, any headset in the Emotiv product line was 

expected to be compatible with the system. 

 

 

 

 

 

 

 

 

Figure 13. Emotiv Insight 
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The second hardware component is a smart wheelchair or a 

BCI-controlled wheelchair. In this study, an electric 

wheelchair was modified into a smart wheelchair. The motor 

driver of the electric wheelchair was replaced with a BTS7960 

motor driver. This approach enables the control of the 

wheelchair motors via an Arduino. The Arduino was then 

connected to a control laptop which allows the NeuroWarn 

system to control the movement of the wheelchair. 

 

 

Figure 14. Smart Wheelchair 
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To enable the NeuroWarn BCI to detect obstacles, the 

modified wheelchair was equipped with obstacle-detecting 

sensors. Specifically, a total of four sensors were installed 

with two facing forward and two facing backward. The 

front-facing sensor utilized in the modified wheelchair was a 

time-of-flight sensor. It was capable of detecting obstacles, 

for this use case the researcher utilized a range of 1,500 

millimeters in a 20-27-degree field of view. These sensors 

were positioned at the front corner of the wheelchair at an 

angle of 13.5 degrees facing up and 5 degrees on the side to 

cover the center. The rear-facing sensor was an ultrasonic 

sensor with a utilized detection range of 1 meter in a 

15-degree field of view. These sensors were positioned in the 

rear corners of the wheelchair at an angle that covers a range 

approximately the same size as the width of the wheelchair. 

This configuration enabled the wheelchair to detect obstacles 

in its path both ahead and behind as illustrated in the 

following figure. 
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Figure 15. Top View of the Detection Zones of the Obstacle 

Detecting Sensors 

 

 

 

Figure 16. Side View of the detection Zones of the Obstacle 

Detecting Sensors 

 

Figures 15 and 16 illustrate the coverage and range of 

the obstacle-detecting sensors. The area colored red is the 

coverage of the LiDAR sensor while the area in gray is the 

coverage of the ultrasonic sensor.  
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The modified electric wheelchair was converted into a 

smart wheelchair using two Arduino circuits. One controlled 

the wheelchair's motor, while the other collected sensor data. 

The following was the circuit diagram for the Arduino 

circuits. 

 

Figure 17. Arduino Circuit Diagram for the Electric Motor 

Driver Control 

Figure 17 shows the Arduino circuit diagram for the 

electric motor driver control. To transform the standard 

electric wheelchair into a smart wheelchair, the existing 

motor driver was replaced with a BTS7960 electric motor 

driver. This motor driver was selected for its capability to 
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handle high-amperage motors. Two BTS7960 drivers were used, 

one for each motor. 

The first BTS7960 driver was connected to the Arduino, 

with pin 7 linked to the driver's RPWM pin and pin 8 connected 

to the LPWM pin. These pins controlled the motor's rotation 

direction. To regulate motor speed, pin 3 of the Arduino was 

connected to the driver's L_EN and R_EN pins. For power, the 

Arduino's 5V pin was connected to the driver's VCC pin, and 

GND was linked to the ground. The driver was then connected to 

Motor One and its 24V battery. 

For the second BTS7960 driver, pin 9 of the Arduino was 

connected to the driver's RPWM pin, and pin 10 was connected 

to the LPWM pin to control the motor's direction. Pin 11 was 

linked to the L_EN and R_EN pins for speed control. The driver 

was powered by connecting it to the Arduino's 5V and GND pins. 

It was then connected to the second motor of the wheelchair 

and the motor battery for power. 

This circuit enabled the control laptop to manage the 

wheelchair's motor movement, allowing the NeuroWarn system to 

control the wheelchair's physical motion. 
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Figure 18. Arduino Circuit Diagram for the Obstacle Sensors 

Figure 18 illustrates an Arduino microcontroller 

connected to 2 ultrasonic sensors (HC-SR04) and 2 

time-of-flight sensors (VL53L1X) for distance measurement. The 

HC-SR04 sensors are powered by the Arduino's 5V and GND pins, 

with their trigger and echo pins connected to separate digital 

pins for measuring distance using ultrasonic waves. Meanwhile, 

the VL53L1X sensors are interfaced via the I2C bus, with their 

SDA and SCL lines connected to the Arduino’s SCL and SDA pins, 

respectively, while the XSHUT pins are assigned to different 

digital pins to manage individual sensor addresses. These 

sensors receive power from the 5V pins of the Arduino. This 

setup satisfies the distance sensing requirement, utilizing 
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VL53L1x attached on the front ensures real-time sensing 

capability.  
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Software Requirements 

The following are the software requirements to run 

NeurowarnBCI:   

1.​EmotivBCI - is an application developed by Emotiv for 

their EEG headset. This is where users can train 

Mental Command. Mental Commands are used in this study 

as the input control for wheelchair movement and a 

target variable for the RNN prediction.   

2.​Node-RED - is an open-source flow-based programming 

tool that allows users to connect devices, APIs, and 

services through a visual interface. In this study, 

Node-RED was used as the tool to collect EEG data. 

This data is used to train the prediction of the RNN 

Model.   

3.​Neurowarn BCI - is the software developed in this 

study. It integrates both the control system for the 

BCI-controlled wheelchair, and RNN-based warnings for 

obstacle avoidance and safety.  
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Input and Outputs of the Study 

The study receives input from the user through an EEG 

headset, which reads the user's brainwave activity and 

transmits the data to the system for interpretation. The 

system has two outputs: wheelchair movement and a warning 

system. To achieve this functionality, there are several 

interactions between the user and the system.  

 

Emotiv Mental Command Suite Training   

The Emotiv Mental Command Suite is a brain-computer 

interface framework developed by the company Emotiv that can 

classify user intention through training [41]. It was chosen 

to be the main framework for this study due to its popularity 

and reliability in the BCI research community [56]. The mental 

command suite has fifteen commands. However, for this study, 

only two out of fifteen commands will be trained and used. 

These commands are the push (forward) and pull (backward). The 

EmotivBCI application provides an interface for training the 

Mental Command Suite.  
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Neutral State Training   

Before training a command, the mental command suite first 

requires the user to train a neutral state. In this state, the 

user training the framework must be calm and quiet. This state 

serves as the baseline for classifying various kinds of 

commands. Figure 19 illustrates the user interface of 

EmotivBCI when adding a neutral state.  

 

Figure 19: EmotivBCI’s User Interface when adding Neutral 
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Push (Forward) Command Training   

To train the push command, the user must simply select 

the add command and choose push in the EmotivBCI application. 

Once the command is added, the user can start training.  

 

Figure 20. EmotivBCI’s User Interface when adding push 

When the user starts training, it should bring the user 

to a training interface where the user can start thinking of a 

specific thought that he/she wants to associate with the push 

command. Associating a facial muscle movement (e.g., smiling, 

raising brows, clenching teeth) with training mental commands 
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is also possible, as this approach has proven highly effective 

in EEG classification [61].  

 

Figure 21. EmotivBCI’s UI during pull training 

The user can then continuously add training to the push 

command. The more training sessions recorded, the more 

accurate the framework can classify the registered command.  
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Pull (Backward) Command Training   

Similarly to the push command, to train the pull command, the 

user must first add a new command and select pull. The user 

can then start training the pull command.   

 

Figure 22. EmotivBCI’s User Interface when adding pull 

During training, the user is be taken to an interface 

like the previous command training. However, the user training 

the mental commands must think of a thought or facial muscle 

movement different from the thought or facial muscle movement 

he/she associated with the previous commands. This is to 

ensure that brainwave data differ and the MCS framework can 

classify it.  
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Figure 23. EmotivBCI’s performance visualization 

`​ EmotivBCI features a simple visualization of the 

framework's performance in classifying commands as shown in 

the image above. Each circle represents a distinct mental 

command, and the greater the distance between these circles, 

the better the performance of the Mental Command framework. To 

achieve optimal results, users are encouraged to continually 

train their mental commands.    

Once the mental command training is complete, the user 

can begin operating the BCI wheelchair control system.  
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The Neurowarn BCI wheelchair control system   

The BCI wheelchair control system has five expected 

movements: stop, forward, backward, left, and right. However, 

due to the limitations of the five-channel EEG headset [57], 

only three movements (stop, forward, and backward) will be 

controlled using the mental command framework. For the left 

and right movements, the onboard gyroscope in the Emotiv 

Insight headset will be utilized as has been implemented in 

other BCI-controlled wheelchairs [58].  

Additionally, each movement also triggers a response in 

Neurowarn’s user interface. A section of Neurowarn’s interface 

displays the current state or the direction of the wheelchair 

as shown in Figure 21. 
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Figure 24. Neurowarn’s UI section that shows the wheelchair 

state 

The smart wheelchair's user interface (UI) displays both 

the current and predicted path, providing a direct visual 

representation of the wheelchair's movements. Additionally, 

the UI provides an assessment of the safety of these paths by 

utilizing the Obstacle Detection feature, located on the left 

side of the interface. If either the predicted or current path 

is deemed unsafe, the text indicator updates from "Safe" to 

"Not Safe." Furthermore, the interface also displays the 

status of the EEG battery and signal quality. 
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Moving Forward   

To activate the forward output, the user must think of 

the trigger thought they practiced during the push training. 

This is expected to make the wheelchair move forward. 

 

Figure 25. Before and after forward command  

Figure 25 shows the output of the forward command. The 

image on the left is the position of the wheelchair before the 

forward command while the image on the right is after the 

forward command. Observe how the wheelchair moves forward 

after the forward command.  
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Figure 26. Neurowarn BCI’s interface when moving forward 

Additionally, when the forward command is triggered, a 

section of the warning system's user interface displays the 

message “Forward,” as shown in Figure 26.  
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Moving Backward  

To activate the backward output, the user must think of 

the trigger thought they practiced during the pull training. 

This is expected to result in the wheelchair moving backward.  

Figure 27. Before and after backward command  

Figure 27 shows the output of the backward command. The 

image on the left is the position of the wheelchair before the 

backward command while the image on the right is after the 

backward command. Observe how the wheelchair moves backward 

after the backward command.  
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Figure 28. Neurowarn BCI’s interface when moving backward 

Similarly with move forward, when the backward command is 

triggered, a section of the warning system's user interface 

displays the message “Backward” as shown in Figure 28.  
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Turning Left  

To activate the left output, the user must simply tilt 

their head to the left. This is expected to result in the 

wheelchair turning left.  

 

Figure 29. Before and after left command ​  

Figure 29 shows the output of the left command. The image 

on the left is the position of the wheelchair before the left 

command while the image on the right is after the left 

command. Observe how the wheelchair turns left after the left 

command.  
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Figure 30. Neurowarn BCI’s interface when turning left 

A UI response is also triggered when turning left. 

Neurowarn BCI’s interface displays the text “Turning Left” as 

seen in Figure 30.  
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Turning Right  

To activate the right output, the user must simply tilt 

their head to the right. This is expected to result in the 

wheelchair turning right.  

 

Figure 31. Before and after the right command  

The images above show the output of the right command. 

The image on the left is the position of the wheelchair before 

the right command while the image on the right is after the 

right command. Observe how the wheelchair turns right after 

the right command.  
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Figure 32. Neurowarn BCI’s interface when turning right 

When the right command is triggered, a section of the warning 

system's user interface displays the message “turning right” 

as shown in Figure 32.   
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Obstacle Detection output  

The input from the obstacle detection sensors generates a 

corresponding output in the NeuroWarn user interface. A simple 

obstacle map within the UI displays the detected obstacle in a 

way that is easy for the user to understand.  

 

Figure 33. Neurowarn BCI’s obstacle detector section 

The obstacle map has an image of a wheelchair positioned 

in the center, with three bars displayed in front and three 

bars at the back as seen in the screenshot above. The bars 

appear green when no obstacles are detected, and they turn red 
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when an obstacle is detected in that area as seen in the 

following examples.   
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Figure 34. The image shows a box positioned in front of 

the wheelchair to simulate an obstacle.  

Figure 35. User interface when an obstacle is detected in 

front 
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In Figure 34, an obstacle is visible in front of the 

wheelchair. The wheelchair’s front LiDAR sensor detects this 

obstacle and displays it on the user interface, as shown in 

Figure 35.  
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Figure 36. The image shows a box positioned behind the 

wheelchair to simulate an obstacle.  

 

 

Figure 37. Neurowarn’s UI interface when back obstacles are 

detected  
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In Figure 36, an obstacle is visible at the back of the 

wheelchair. The wheelchair’s back LiDAR sensor detects this 

obstacle and displays it on the user interface, as shown in 

Figure 37. 
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Warning Outputs  

Warning prompts accompanied by a warning sound are 

triggered when the predicted direction aligns with an 

obstacle. Additionally, the system also stops the motors to 

prevent a collision. Once the path is clear of obstacles, the 

warning prompt disappears, and the wheelchair motor is 

reactivated allowing the user to resume movement.  

 

 

 

 

 

 

 

 

 

Figure 38. The image shows an obstacle in the path of the 

predicted direction 
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Figure 39. Warning prompt of forward  

Figure 38 shows an instance where a participant triggered 

a warning. An obstacle was detected in front of the wheelchair 

while it was expected to move forward. Figure 39 displays the 

warning prompt generated by the user interface in response to 

the potential collision. 
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Results Interpretation and Analysis 

The results and analysis focused on the performance of 

the LSTM neural network trained on EEG frequency band data to 

classify three commands: Neutral, Forward, and Backward. The 

model performance was evaluated using multiple metrics, 

including precision, sensitivity (recall), specificity, 

F1-score, and a confusion matrix. These metrics were derived 

from predictions on the test set, which was separate from the 

training set to ensure an unbiased evaluation of model 

performance. 

 

Dataset  

The dataset was composed of 25 features, which are the 5 

frequency bands of each of the 5 probes of the EEG headset. 

The target variable would be one of three commands: neutral, 

forward, or backward. The data collection process used 

Node-RED to record the frequency band activities from the EEG 

headset and directly outputs them as a CSV file ready to be 

preprocessed and used for training in our LSTM Model. 
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Precision 

The precision of the positive predictions is a measure of 

their accuracy. A 94.16% accuracy in this instance indicated 

that 94.16% of the samples that were predicted to be positive 

were, in fact, true positives. Given its high accuracy rate, 

the model appeared to be reasonably adept at preventing false 

positives. When false positives must be reduced, like in 

obstacle avoidance decision-making situations, high accuracy 

is essential. 

 

Sensitivity/Recall 

Sensitivity, or recall, measures the proportion of true 

positives correctly identified out of the total actual 

positives. A sensitivity of 93.95% meant that the model 

successfully identified 93.95% of all actual instances of each 

command. This high recall showed that the model was adept at 

capturing actual instances of commands, reducing the chance of 

missed detections (false negatives). This performance level is 

advantageous for applications in obstacle avoidance where it 

is important to identify as many true positives as possible, 

ensuring responsiveness to each command. 
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Specificity 

Specificity measures the model's ability to correctly 

identify negative cases. A specificity of 96.70% implied that 

the model performs very well at avoiding false positives. High 

specificity further reinforces the model's reliability by 

ensuring that instances were not incorrectly classified as 

commands. This was critical for minimizing false alarms and 

ensuring that only genuine commands were acted upon, improving 

overall model robustness. 

 

F1-Score 

The F1-score provides a balanced view of the model's 

precision and recall by calculating their harmonic mean. With 

an F1-score of 94.05%, the model demonstrated strong overall 

accuracy in correctly identifying commands while balancing 

false positives and false negatives. The high F1-score 

indicated that the model was well-suited for applications 

where a balance between precision and recall is essential, 

making it effective in scenarios requiring both accurate 

command detection and minimal false classifications. 
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Overall Accuracy 

Figure 40. Model Accuracy 

With an overall accuracy of 93.87%, a majority of the 

test set's samples were correctly predicted to be either 

Neutral, Forward, or Backward by the model. With a high degree 

of accuracy, this result shows that the model can consistently 

categorize EEG-based orders, indicating its overall efficacy 

in command identification. An accuracy of more than 93.87% 

indicates that the model has picked up on pertinent patterns 

in the data, but it could still be improved to pick up on more 

subtleties that might help lower mistakes even further. 
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Confusion Matrix 

 

Figure 41. Confusion Matrix 

The confusion matrix is a visualization tool used to 

evaluate the performance of your image classification model. 

It allows you to compare the actual target values (True Label) 

with the predicted values (Predicted Label) from your machine 

learning model. In this case, the target categories are 

‘Neutral’, ‘Forward’, and ‘Backward’. 

a) Neutral: The model correctly classified 353 out of 375 

neutral samples (94.1% accuracy). There were 22 false 

negatives (classified as Forward) and 10 false negatives 

(classified as Backward). 
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b) Forward: The model correctly classified 297 out of 310 

forward samples (95.81% accuracy). There were 17 false 

negatives (classified as Neutral) and 17 false positives 

(classified as Backward). 

c) Backward: The model correctly classified 189 out of 

195 backward samples (96.92% accuracy). There were 6 

false negatives (classified as Neutral) and 50 false 

positives (classified as Forward). 

Overall, the model performed well in classifying all 

three classes with high accuracy (>94%). The lowest accuracy 

was observed for the Neutral class (94.1%) but all the 

accuracies were well above the chance level. 

Here are some additional metrics to consider: 

Metric Percentage 

Precision 94% 

Recall (Sensitivity) 93% 

F1-Score 94% 

Specificity 96% 

Table 1. Metrics 
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These metrics further confirm that the model is 

performing well on this classification task. 

We can also see the loss and accuracy curves plotted over 

the epochs. The training accuracy increases steadily, and the 

validation accuracy follows a similar trend. This suggests 

that the model is learning well and generalizes well to unseen 

data. The loss curves show a similar trend where the training 

loss decreases and the validation loss follows a similar 

pattern. This again suggests that the model is learning well 

and not overfitting to the training data. 

 

Effects of Methods and Enhancements 

a)​L2 Regularization: This regularization method reduces 

overfitting by penalizing large weights, helping the 

model generalize better to unseen data. This likely 

contributed to the high specificity and precision scores, 

which show the model’s effectiveness on the test set. 

b)​Batch Normalization: Added after each LSTM layer, batch 

normalization helps stabilize and accelerate the training 
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process, improving model convergence and reducing 

overfitting. 

c)​Dropout and Spatial Dropout: These methods were applied 

to prevent over-reliance on specific neurons by randomly 

disabling them during training. The dropout layers likely 

contributed to reducing overfitting, as suggested by the 

high scores on the test set. 

d)​Checkpoint and Early Stopping: These callbacks preserved 

the best-performing model and prevented further training 

when validation loss plateaued. This approach likely 

prevented overfitting, ensuring a model with strong 

generalization capabilities. 

 

Observations and Significant Variables 

1. Effect of Sequence Length (Window Size): The model's 

capacity to accurately capture temporal patterns may have been 

impacted by the window size of 5 used to create EEG sequences. 

Testing different sequence lengths turns up patterns that 

enhance F1-score and memory.​

 2. Hyperparameter Selections: The dropout rate and kernel 
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regularization parameter were set to certain values, however, 

they may still need to be adjusted further to improve the 

model's performance. The optimal value found to maximize the 

accuracy of the model was a dropout rate of 0.3. 

3. Class Imbalance: If the number of samples for each 

instruction is unbalanced, recall or specificity may be 

impacted. Balancing the dataset or changing the class weights 

during training may further increase the model's sensitivity. 
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System Evaluation Results 

A total of ten participants were invited to evaluate the 

Neurowarn system. These were individuals aged 18-25 who were 

willing to spend time to train and test the Neurowarn system. 

Each test session lasted three hours per participant. 

Participants were first asked to train the mental commands 

which took 1.5 hours and train the RNN model which took 

another hour.   

A 6x3 meter area was then converted into an obstacle 

course to allow participants to test the wheelchair. A 

predetermined path was set within this space, with four 

obstacles strategically placed along the path. The obstacle 

was a 32 cm x 22 cm x 24 cm box, large enough for the 

wheelchair sensor to detect. Figure 42 illustrates the 

obstacle course design.  
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Figure 42. The course design  

Participants were then given 15 minutes to complete the 

obstacle. They were instructed to simply follow the 

predetermined path and avoid the obstacles.  

 

ISO 9241-11  

The NeuroWarn BCI was then evaluated using the ISO 

9241-11 standards. It was selected for its focus on usability 

in Human-Computer Interaction (HCI) systems. This standard was 

particularly relevant for assessing safety-critical systems 

such as EEG-based wheelchair control where usability is 

essential to ensure safe and effective operation [59].  
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According to the ISO 9241-11 standards, usability is 

defined as the range in which a product can be used by 

specific users to achieve certain specified goals with 

effectiveness, efficiency, and satisfaction in a specified 

context of use [60].   

A 30-item questionnaire, comprising 10 questions for each 

aspect of usability—effectiveness, efficiency, and 

satisfaction—was written for the evaluation. These questions 

were based on the specific standards outlined in ISO 9241-11 

[60]. Participants were asked to rate each question on a 

5-point Likert scale, where 1 represents "Strongly Disagree" 

and 5 represents "Strongly Agree." The purpose of this 

assessment was to gather participants' perspectives on the 

overall usability of the NeurowarnBCI system.  
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Participant  Effectiveness Efficiency  Satisfaction  Total 
Usability 
Score  

Participant 1  4.1  4.3  4.5  4.3  

Participant 2  4.0  4.2  4.3  4.2  

Participant 3  4.2  4.4  4.4  4.3  

Participant 4  4.3  4.1  4.5  4.3  

Participant 5  4.0  4.3  4.4  4.2  

Participant 6  4.1  4.2  4.3  4.2  

Participant 7  4.2  4.4  4.5  4.4  

Participant 8  4.1  4.3  4.3  4.2  

Participant 9  4.2  4.3  4.4  4.3  

Participant 10  4.1  4.2  4.4  4.2  

Overall Average  4.13  4.27  4.40  4.27  

Table 2. Results Table 

 

 

 

 

Table 3. Evaluation Legend 

Table 2 presents the average Likert scale ratings for 

Effectiveness, Efficiency, and Satisfaction across 10 

participants, using the evaluation legend from Table 3. It 
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also includes the Total Usability Score for each participant. 

The highest possible score was 5, and the lowest was 1. The 

following is the interpretation of each usability aspect;  

 

Effectiveness   

Effectiveness, as defined by ISO 9241-11, refers to the 

accuracy and completeness with which users achieve specified 

tasks using the system. NeuroWarn received an average 

effectiveness score of 4.13, indicating that users generally 

perceived the system to accurately interpret and respond to 

their commands. Most participants felt that NeuroWarn could 

reliably predict intended directions and effectively detect 

and avoid obstacles in the environment. This score reflects a 

solid performance in interpreting user inputs and providing an 

accurate response that aligns with user expectations for a 

navigation assistive device.  

 

Efficiency   

Efficiency measures the resources expended, such as time 

and mental effort, to achieve a goal while using the system. 

NeuroWarn achieved an average efficiency score of 4.27, 
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reflecting a high level of perceived efficiency. Participants 

reported that they could focus more on navigating the course 

rather than on managing NeuroWarn’s controls, allowing for 

faster and smoother task completion. The system’s 

responsiveness and interface clarity contributed to this 

high-efficiency rating, enabling users to maintain a steady 

pace with minimal interruptions.  

 

Satisfaction   

Satisfaction reflects the overall comfort and positive 

experience users have with the system. NeuroWarn scored an 

impressive 4.40 in satisfaction, the highest average across 

the three categories. This high score indicates that users 

were generally very pleased with the system's usability, 

performance, and intuitive interface. Participants expressed 

confidence in using NeuroWarn and appreciated its clear 

feedback, smooth interface, and visually appealing design.  

 

Overall Usability Score  

The combined average usability score for NeuroWarn was 

4.27. This robust rating signifies that NeuroWarn is a 
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well-rounded system with strengths across effectiveness, 

efficiency, and satisfaction as outlined in the ISO 9241-11 

standards [60]. Participants felt that it met their 

expectations for performance, ease of use, and navigational 

support, with minimal mental effort required to achieve tasks.  
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CHAPTER 5 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

Summary of the Proposed Study Design and Implementation 

 

A smart wheelchair system was developed that integrates a 

5-channel Emotiv Insight EEG headset for brainwave acquisition 

and LiDAR sensors for obstacle detection. A Recurrent Neural 

Network with Long Short-Term Memory (RNN-LSTM) architecture 

was employed to predict the user’s intended direction, 

enhancing the system’s autonomous navigation capabilities. To 

facilitate user interaction and provide real-time feedback, a 

web application was designed to simplify complex system 

inputs, such as EEG signals, LiDAR data, and RNN-LSTM 

predictions, into intuitive visual prompts. Auditory alerts 

were also implemented to provide additional warning signals.  
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Summary of Findings 

NeuroWarn BCI’s smart wheelchair system demonstrated 

effective obstacle detection capabilities, with LiDAR sensors 

providing a 1.5-meter range for front obstacles and 1-meter 

range for rear obstacles. The system's predictive algorithm, 

based on an RNN-LSTM architecture, achieved an accuracy of 

86.05% in predicting user intent, as measured by the xtest 

dataset. 

To assess the system's usability and effectiveness, an 

evaluation was conducted using the ISO 9241-11 standard. The 

results indicated a high level of user satisfaction and system 

performance, with an overall average rating of 4.27 out of 5 

across the dimensions of effectiveness, efficiency, and 

satisfaction. 
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Conclusions 

 This study successfully developed and evaluated a smart 

wheelchair system that leverages advanced technologies to 

enhance user autonomy and safety. By integrating a 5-channel 

EEG headset, LiDAR sensors, and an RNN-LSTM-based predictive 

model, the system accurately interprets user intent and 

detects obstacles in real-time. A user-friendly web interface 

and auditory alerts further improve usability and 

effectiveness. 

The system's performance, as evaluated using the ISO 

9241-11 standard, demonstrated high user satisfaction and 

effectiveness. The results indicate that the system 

effectively meets the needs of users, particularly in terms of 

ease of use, efficiency, and overall satisfaction. 
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Recommendations 

 To further enhance the accuracy of brainwave data 

acquisition, the use of a higher channel EEG system is 

recommended. While resource constraints limited the scope of 

this study, future research could explore the potential 

benefits of such a system. 

Additionally, optimizing hyperparameter tuning can 

significantly impact the model's performance. Experimenting 

with different LSTM layer sizes, dropout rates, and 

regularization strengths may improve the balance between 

accuracy and recall. Moreover, varying the sequence length can 

enhance the model's ability to identify pertinent patterns in 

the data, which could increase sensitivity and precision.  

 Also, in terms of data augmentation, providing the model 

with more instances to train from, and supplementing data for 

classes with fewer samples may assist increase recall and the 

F1-score. Exploring alternative model architectures like 

transformer-based networks or GRUs could also lead to more 

effective capture of EEG patterns. 
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 Future research in BCI should also explore different 

testing frameworks for evaluating BCI models. By directly 

analyzing raw EEG data to predict usability metrics, such 

frameworks can provide more objective and quantitative 

assessments, moving beyond traditional subjective 

questionnaires. 

 Finally, to enhance and prove its efficiency, it is 

recommended that the system be tested on actual quadriplegic 

patients. If proven effective, its implementation would 

represent a significant advancement in the biomedical field. 
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	CHAPTER 4 RESULTS AND DISCUSSION 
	Implementation 
	Development Tools 
	 
	Hardware Requirements 
	The second hardware component is a smart wheelchair or a BCI-controlled wheelchair. In this study, an electric wheelchair was modified into a smart wheelchair. The motor driver of the electric wheelchair was replaced with a BTS7960 motor driver. This approach enables the control of the wheelchair motors via an Arduino. The Arduino was then connected to a control laptop which allows the NeuroWarn system to control the movement of the wheelchair. 
	 
	To enable the NeuroWarn BCI to detect obstacles, the modified wheelchair was equipped with obstacle-detecting sensors. Specifically, a total of four sensors were installed with two facing forward and two facing backward. The front-facing sensor utilized in the modified wheelchair was a time-of-flight sensor. It was capable of detecting obstacles, for this use case the researcher utilized a range of 1,500 millimeters in a 20-27-degree field of view. These sensors were positioned at the front corner of the wheelchair at an angle of 13.5 degrees facing up and 5 degrees on the side to cover the center. The rear-facing sensor was an ultrasonic sensor with a utilized detection range of 1 meter in a 15-degree field of view. These sensors were positioned in the rear corners of the wheelchair at an angle that covers a range approximately the same size as the width of the wheelchair. This configuration enabled the wheelchair to detect obstacles in its path both ahead and behind as illustrated in the following figure. 
	 
	 
	Figure 15. Top View of the Detection Zones of the Obstacle Detecting Sensors 
	 
	Figure 16. Side View of the detection Zones of the Obstacle Detecting Sensors 
	Figures 15 and 16 illustrate the coverage and range of the obstacle-detecting sensors. The area colored red is the coverage of the LiDAR sensor while the area in gray is the coverage of the ultrasonic sensor.  
	 
	The modified electric wheelchair was converted into a smart wheelchair using two Arduino circuits. One controlled the wheelchair's motor, while the other collected sensor data. The following was the circuit diagram for the Arduino circuits. 
	Figure 18 illustrates an Arduino microcontroller connected to 2 ultrasonic sensors (HC-SR04) and 2 time-of-flight sensors (VL53L1X) for distance measurement. The HC-SR04 sensors are powered by the Arduino's 5V and GND pins, with their trigger and echo pins connected to separate digital pins for measuring distance using ultrasonic waves. Meanwhile, the VL53L1X sensors are interfaced via the I2C bus, with their SDA and SCL lines connected to the Arduino’s SCL and SDA pins, respectively, while the XSHUT pins are assigned to different digital pins to manage individual sensor addresses. These sensors receive power from the 5V pins of the Arduino. This setup satisfies the distance sensing requirement, utilizing VL53L1x attached on the front ensures real-time sensing capability. 
	Software Requirements 
	 
	Input and Outputs of the Study 

	 
	In Figure 34, an obstacle is visible in front of the wheelchair. The wheelchair’s front LiDAR sensor detects this obstacle and displays it on the user interface, as shown in Figure 35.  
	In Figure 36, an obstacle is visible at the back of the wheelchair. The wheelchair’s back LiDAR sensor detects this obstacle and displays it on the user interface, as shown in Figure 37. 
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